import cv2;
import numpy;
import pandas;
import matplotlib.pyplot as plt;
# 模板匹配
img = cv2.imread('D:\\pythonDemon\\opencv\\lena.jpg', 0)
template = cv2.imread('D:\\pythonDemon\\opencv\\face.jpg', 0)
h, w = template.shape[:2]
res = cv2.matchTemplate(img, template,cv2.TM_SQDIFF)
#print(res)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
print(min_val, max_val, min_loc, max_loc)
# - TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
# - TM_CCORR:计算相关性,计算出来的值越大,越相关
# - TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
# - TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
# - TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
# - TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关
methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
for meth in methods:
img2 = img.copy()
# 匹配方法的真值
method = eval(meth)
print (method)
res = cv2.matchTemplate(img, template, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
# 画矩形
cv2.rectangle(img2, top_left, bottom_right, 255, 2)
plt.subplot(121), plt.imshow(res, cmap='gray')
plt.xticks([]), plt.yticks([]) # 隐藏坐标轴
plt.subplot(122), plt.imshow(img2, cmap='gray')
plt.xticks([]), plt.yticks([])
plt.suptitle(meth)
plt.show()
OpenCV模板
最新推荐文章于 2025-11-20 17:30:00 发布
398

被折叠的 条评论
为什么被折叠?



