import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import time as time
import tensorflow.keras.preprocessing.image as image
import matplotlib.pyplot as plt
import os
from scipy.io import loadmat
import pandas as pd
import numpy as np
from sklearn import preprocessing # 0-1编码
from sklearn.model_selection import StratifiedShuffleSplit # 随机划分,保证每一类比例相同
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from tensorflow.keras.initializers import glorot_uniform
import matplotlib.pyplot as plt
from prettytable import PrettyTable
import six
import math
from matplotlib.pyplot import MultipleLocator
physical_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
# 读取数据
url_1 = r'D:\dad\MHA-data\CNN-LSTM.csv'
url_2 = r'D:\dad\MHA-data\MHA_1.csv'
url_3 = r'D:\dad\MHA-data\EX_MHA_1.csv'
url_4 = r'D:\dad\MHA-data\L_MHA_1.csv'
url_5 = r'D:\dad\MHA-data\MHA_2.csv'
url_6 = r'D:\dad\MHA-data\EX_MHA_2.csv'
url_7 = r'D:\dad\MHA-data\L_MHA_2.csv'
url_8 = r'D:\dad\MHA-data\LSTM.csv'
url_9 = r'D:\dad\MHA-data\RES_CNN.csv'
url_0 = r'D:\dad\MHA-data\MLP.csv'
url_10 = r'D:\dad\MHA-data\MHA.csv'
url_11 = r'D:\dad\MHA-data\EX_MHA.csv'
url_12 = r'D:\dad\MHA-data\L_MHA.csv'
data_1 = pd.read_csv(url_1)
data_2 = pd.read_csv(url_2)
data_3 = pd.read_csv(url_3)
data_4 = pd.read_csv(url_4)
data_5 = pd.read_csv(url_5)
data_6 = pd.read_csv(url_6)
data_7 = pd.read_csv(url_7)
data_8 = pd.read_csv(url_8)
data_9 = pd.read_csv(url_9)
data_0 = pd.read_csv(url_0)
data_10 = pd.read_csv(url_10)
data_11 = pd.read_csv(url_11)
data_12 = pd.read_csv(url_12)
val_acc = []
for i in range(30):
val_acc.append(np.float(data_1.iloc[2*i,0].split(':')[-1]))
CNN_LSTM = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_2.iloc[2*i,0].split(':')[-1]))
MHA_1 = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_3.iloc[2*i,0].split(':')[-1]))
EX_MHA_1 = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_4.iloc[2*i,0].split(':')[-1]))
L_MHA_1 = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_5.iloc[2*i,0].split(':')[-1]))
MHA_2 = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_6.iloc[2*i,0].split(':')[-1]))
EX_MHA_2 = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_7.iloc[2*i,0].split(':')[-1]))
L_MHA_2 = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_8.iloc[2*i,0].split(':')[-1]))
LSTM = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_9.iloc[2*i,0].split(':')[-1]))
RES_CNN = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_0.iloc[2*i,0].split(':')[-1]))
MLP = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_10.iloc[2*i,0].split(':')[-1]))
MHA = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_11.iloc[2*i,0].split(':')[-1]))
EX_MHA = val_acc
val_acc = []
for i in range(30):
val_acc.append(np.float(data_12.iloc[2*i,0].split(':')[-1]))
L_MHA = val_acc
np.arange(1,len(CNN_LSTM)+1)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30])
# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)
# 在同一幅图片上画两条折线
B, = plt.plot(np.arange(1,len(MHA_1)+1),MHA_1, 'b-.', label='MHA_1',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_1)+1),EX_MHA_1, 'k-.', label='EX_MHA_1',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_1)+1),L_MHA_1, 'lime',linestyle="-.", label='L_MHA_1',marker='s', linewidth=1.5)
A, = plt.plot(np.arange(1,len(MHA)+1),MHA, 'c-.', label='MHA',marker='x', linewidth=1.5)
E, = plt.plot(np.arange(1,len(EX_MHA)+1),EX_MHA, 'g-.', label='EX_MHA',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(L_MHA)+1),L_MHA, 'r-.', label='L_MHA',marker='d', linewidth=1.5)
# E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
# F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
# G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 23,
}
legend = plt.legend(handles=[ B,C,D,A,E,F], prop=font1)
ax=plt.gca()
#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 30,
}
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yoCFcsum-1606139160083)(output_6_0.png)]
# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)
# 在同一幅图片上画两条折线
B, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'b-.', label='MHA_2',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'k-.', label='EX_MHA_2',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'lime',linestyle="-.", label='L_MHA_2',marker='s', linewidth=1.5)
A, = plt.plot(np.arange(1,len(MHA)+1),MHA, 'c-.', label='MHA',marker='x', linewidth=1.5)
E, = plt.plot(np.arange(1,len(EX_MHA)+1),EX_MHA, 'g-.', label='EX_MHA',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(L_MHA)+1),L_MHA, 'r-.', label='L_MHA',marker='d', linewidth=1.5)
# E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
# F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
# G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 23,
}
legend = plt.legend(handles=[ B,C,D,A,E,F], prop=font1)
ax=plt.gca()
#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 30,
}
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YNwRViX3-1606139160085)(output_7_0.png)]
# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)
# 在同一幅图片上画两条折线
A, = plt.plot(np.arange(1,len(CNN_LSTM)+1),CNN_LSTM, 'c-.', label='CNN_LSTM',marker='x', linewidth=1.5)
B, = plt.plot(np.arange(1,len(MHA_1)+1),MHA_1, 'b-.', label='MHA_1',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_1)+1),EX_MHA_1, 'k-.', label='EX_MHA_1',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_1)+1),L_MHA_1, 'm-.', label='L_MHA_1',marker='s', linewidth=1.5)
E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 23,
}
legend = plt.legend(handles=[A, B,C,D,E,F,G], prop=font1)
ax=plt.gca()
#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 30,
}
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FvzscJRf-1606139160086)(output_10_0.png)]
# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)
# 在同一幅图片上画两条折线
A, = plt.plot(np.arange(1,len(CNN_LSTM)+1),CNN_LSTM, 'c-.', label='CNN_LSTM',marker='x', linewidth=1.5)
B, = plt.plot(np.arange(1,len(MHA_1)+1),MHA_1, 'b-.', label='MHA_1',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_1)+1),EX_MHA_1, 'k-.', label='EX_MHA_1',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_1)+1),L_MHA_1, 'm-.', label='L_MHA_1',marker='s', linewidth=1.5)
E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)
H, = plt.plot(np.arange(1,len(LSTM)+1),LSTM, 'lime',linestyle="-.", label='LSTM',marker='P', linewidth=1.5)
I, = plt.plot(np.arange(1,len(RES_CNN)+1),RES_CNN, 'gray',linestyle="-." ,label='RES_CNN1D',marker='+', linewidth=1.5)
J, = plt.plot(np.arange(1,len(MLP)+1),MLP, 'gold', linestyle="-.",label='MLP',marker='4', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 23,
}
legend = plt.legend(handles=[A, B,C,D,E,F,G,H,I,J], prop=font1)
ax=plt.gca()
#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 30,
}
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PYPYXjI2-1606139160088)(output_11_0.png)]
# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)
# 在同一幅图片上画两条折线
A, = plt.plot(np.arange(1,len(CNN_LSTM)+1),CNN_LSTM, 'c-.', label='CNN_LSTM',marker='x', linewidth=1.5)
B, = plt.plot(np.arange(1,len(MHA_1)+1),MHA_1, 'b-.', label='MHA_1',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_1)+1),EX_MHA_1, 'k-.', label='EX_MHA_1',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_1)+1),L_MHA_1, 'm-.', label='L_MHA_1',marker='s', linewidth=1.5)
E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)
H, = plt.plot(np.arange(1,len(MHA)+1),MHA, 'lime',linestyle="-.", label='MHA',marker='P', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 23,
}
legend = plt.legend(handles=[A, B,C,D,E,F,G,H], prop=font1)
ax=plt.gca()
#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
'weight': 'normal',
'size': 30,
}
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HrFUGURM-1606139160089)(output_12_0.png)]
该代码段展示了多个深度学习模型(如MHA、EX_MHA、L_MHA等)在30个周期内的验证集准确率。通过绘制折线图,对比了这些模型在验证阶段的性能差异,包括CNN_LSTM、MHA系列和LSTM等。图表详细描绘了每个模型随训练周期的准确性变化,有助于理解各模型的训练效果。
5669

被折叠的 条评论
为什么被折叠?



