随意提取的val_accuracy

该代码段展示了多个深度学习模型(如MHA、EX_MHA、L_MHA等)在30个周期内的验证集准确率。通过绘制折线图,对比了这些模型在验证阶段的性能差异,包括CNN_LSTM、MHA系列和LSTM等。图表详细描绘了每个模型随训练周期的准确性变化,有助于理解各模型的训练效果。
import tensorflow as tf
import tensorflow.keras as keras
import tensorflow.keras.layers as layers
import time as time
import tensorflow.keras.preprocessing.image as image
import matplotlib.pyplot as plt
import os
from scipy.io import loadmat
import pandas as pd
import numpy as np
from sklearn import preprocessing  # 0-1编码
from sklearn.model_selection import StratifiedShuffleSplit  # 随机划分,保证每一类比例相同
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from tensorflow.keras.initializers import glorot_uniform
import matplotlib.pyplot as plt
from prettytable import PrettyTable
import six
import math
from matplotlib.pyplot import MultipleLocator
physical_devices = tf.config.experimental.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
# 读取数据
url_1 = r'D:\dad\MHA-data\CNN-LSTM.csv'
url_2 = r'D:\dad\MHA-data\MHA_1.csv'
url_3 = r'D:\dad\MHA-data\EX_MHA_1.csv'
url_4 = r'D:\dad\MHA-data\L_MHA_1.csv'
url_5 = r'D:\dad\MHA-data\MHA_2.csv'
url_6 = r'D:\dad\MHA-data\EX_MHA_2.csv'
url_7 = r'D:\dad\MHA-data\L_MHA_2.csv'

url_8 = r'D:\dad\MHA-data\LSTM.csv'
url_9 = r'D:\dad\MHA-data\RES_CNN.csv'
url_0 = r'D:\dad\MHA-data\MLP.csv'
url_10 = r'D:\dad\MHA-data\MHA.csv'

url_11 = r'D:\dad\MHA-data\EX_MHA.csv'
url_12 = r'D:\dad\MHA-data\L_MHA.csv'
data_1 = pd.read_csv(url_1)
data_2 = pd.read_csv(url_2)
data_3 = pd.read_csv(url_3)
data_4 = pd.read_csv(url_4)
data_5 = pd.read_csv(url_5)
data_6 = pd.read_csv(url_6)
data_7 = pd.read_csv(url_7)
data_8 = pd.read_csv(url_8)
data_9 = pd.read_csv(url_9)
data_0 = pd.read_csv(url_0)
data_10 = pd.read_csv(url_10)
data_11 = pd.read_csv(url_11)
data_12 = pd.read_csv(url_12)
val_acc = []
for i in range(30):
    val_acc.append(np.float(data_1.iloc[2*i,0].split(':')[-1]))
CNN_LSTM = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_2.iloc[2*i,0].split(':')[-1]))
MHA_1 = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_3.iloc[2*i,0].split(':')[-1]))
EX_MHA_1 = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_4.iloc[2*i,0].split(':')[-1]))
L_MHA_1 = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_5.iloc[2*i,0].split(':')[-1]))
MHA_2 = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_6.iloc[2*i,0].split(':')[-1]))
EX_MHA_2 = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_7.iloc[2*i,0].split(':')[-1]))
L_MHA_2 = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_8.iloc[2*i,0].split(':')[-1]))
LSTM = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_9.iloc[2*i,0].split(':')[-1]))
RES_CNN = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_0.iloc[2*i,0].split(':')[-1]))
MLP = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_10.iloc[2*i,0].split(':')[-1]))
MHA = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_11.iloc[2*i,0].split(':')[-1]))
EX_MHA = val_acc

val_acc = []
for i in range(30):
    val_acc.append(np.float(data_12.iloc[2*i,0].split(':')[-1]))
L_MHA = val_acc
np.arange(1,len(CNN_LSTM)+1)
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17,
       18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30])
# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)


# 在同一幅图片上画两条折线

B, = plt.plot(np.arange(1,len(MHA_1)+1),MHA_1, 'b-.', label='MHA_1',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_1)+1),EX_MHA_1, 'k-.', label='EX_MHA_1',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_1)+1),L_MHA_1, 'lime',linestyle="-.", label='L_MHA_1',marker='s', linewidth=1.5)
A, = plt.plot(np.arange(1,len(MHA)+1),MHA, 'c-.', label='MHA',marker='x', linewidth=1.5)
E, = plt.plot(np.arange(1,len(EX_MHA)+1),EX_MHA, 'g-.', label='EX_MHA',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(L_MHA)+1),L_MHA, 'r-.', label='L_MHA',marker='d', linewidth=1.5)
# E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
# F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
# G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 23,
         }

legend = plt.legend(handles=[ B,C,D,A,E,F], prop=font1)
ax=plt.gca()

#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 30,
         }
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yoCFcsum-1606139160083)(output_6_0.png)]

# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)


# 在同一幅图片上画两条折线

B, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'b-.', label='MHA_2',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'k-.', label='EX_MHA_2',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'lime',linestyle="-.", label='L_MHA_2',marker='s', linewidth=1.5)
A, = plt.plot(np.arange(1,len(MHA)+1),MHA, 'c-.', label='MHA',marker='x', linewidth=1.5)
E, = plt.plot(np.arange(1,len(EX_MHA)+1),EX_MHA, 'g-.', label='EX_MHA',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(L_MHA)+1),L_MHA, 'r-.', label='L_MHA',marker='d', linewidth=1.5)
# E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
# F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
# G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 23,
         }

legend = plt.legend(handles=[ B,C,D,A,E,F], prop=font1)
ax=plt.gca()

#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 30,
         }
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-YNwRViX3-1606139160085)(output_7_0.png)]



# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)


# 在同一幅图片上画两条折线
A, = plt.plot(np.arange(1,len(CNN_LSTM)+1),CNN_LSTM, 'c-.', label='CNN_LSTM',marker='x', linewidth=1.5)
B, = plt.plot(np.arange(1,len(MHA_1)+1),MHA_1, 'b-.', label='MHA_1',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_1)+1),EX_MHA_1, 'k-.', label='EX_MHA_1',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_1)+1),L_MHA_1, 'm-.', label='L_MHA_1',marker='s', linewidth=1.5)
E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 23,
         }

legend = plt.legend(handles=[A, B,C,D,E,F,G], prop=font1)
ax=plt.gca()

#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 30,
         }
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FvzscJRf-1606139160086)(output_10_0.png)]

# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)


# 在同一幅图片上画两条折线
A, = plt.plot(np.arange(1,len(CNN_LSTM)+1),CNN_LSTM, 'c-.', label='CNN_LSTM',marker='x', linewidth=1.5)
B, = plt.plot(np.arange(1,len(MHA_1)+1),MHA_1, 'b-.', label='MHA_1',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_1)+1),EX_MHA_1, 'k-.', label='EX_MHA_1',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_1)+1),L_MHA_1, 'm-.', label='L_MHA_1',marker='s', linewidth=1.5)
E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)

H, = plt.plot(np.arange(1,len(LSTM)+1),LSTM, 'lime',linestyle="-.", label='LSTM',marker='P', linewidth=1.5)
I, = plt.plot(np.arange(1,len(RES_CNN)+1),RES_CNN, 'gray',linestyle="-." ,label='RES_CNN1D',marker='+', linewidth=1.5)
J, = plt.plot(np.arange(1,len(MLP)+1),MLP, 'gold', linestyle="-.",label='MLP',marker='4', linewidth=1.5)
# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 23,
         }

legend = plt.legend(handles=[A, B,C,D,E,F,G,H,I,J], prop=font1)
ax=plt.gca()

#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 30,
         }
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PYPYXjI2-1606139160088)(output_11_0.png)]

# 设置输出的图片大小
figsize = 16, 9
figure, ax = plt.subplots(figsize=figsize)


# 在同一幅图片上画两条折线
A, = plt.plot(np.arange(1,len(CNN_LSTM)+1),CNN_LSTM, 'c-.', label='CNN_LSTM',marker='x', linewidth=1.5)
B, = plt.plot(np.arange(1,len(MHA_1)+1),MHA_1, 'b-.', label='MHA_1',marker='o', linewidth=1.5)
C, = plt.plot(np.arange(1,len(EX_MHA_1)+1),EX_MHA_1, 'k-.', label='EX_MHA_1',marker='^', linewidth=1.5)
D, = plt.plot(np.arange(1,len(L_MHA_1)+1),L_MHA_1, 'm-.', label='L_MHA_1',marker='s', linewidth=1.5)
E, = plt.plot(np.arange(1,len(MHA_2)+1),MHA_2, 'g-.', label='MHA_2',marker='v', linewidth=1.5)
F, = plt.plot(np.arange(1,len(EX_MHA_2)+1),EX_MHA_2, 'r-.', label='EX_MHA_2',marker='d', linewidth=1.5)
G, = plt.plot(np.arange(1,len(L_MHA_2)+1),L_MHA_2, 'y-.', label='L_MHA_2',marker='h', linewidth=1.5)

H, = plt.plot(np.arange(1,len(MHA)+1),MHA, 'lime',linestyle="-.", label='MHA',marker='P', linewidth=1.5)

# 设置图例并且设置图例的字体及大小
font1 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 23,
         }

legend = plt.legend(handles=[A, B,C,D,E,F,G,H], prop=font1)
ax=plt.gca()

#x_major_locator=MultipleLocator(1)
#ax.xaxis.set_major_locator(x_major_locator)
# 设置坐标刻度值的大小以及刻度值的字体
plt.tick_params(labelsize=23)
labels = ax.get_xticklabels() + ax.get_yticklabels()
# print labels
[label.set_fontname('Times New Roman') for label in labels]
# 设置横纵坐标的名称以及对应字体格式
font2 = {'family': 'Times New Roman',
         'weight': 'normal',
         'size': 30,
         }
plt.xlabel('epoches', font2)
plt.ylabel('accuracy', font2)
plt.title("Comparison of different models in validation set",font2)
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-HrFUGURM-1606139160089)(output_12_0.png)]


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

潘诺西亚的火山

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值