在进行语义分割,目标检测等深度学习任务时,需要对原始数据进行一定的处理,增广数据集,再入到网络当中。本文实现对原始图像的缩小,但是不改变原始图像的长宽,对于缩小的图像进行边缘的填充,使得和原始图像大小一致。
import numpy as np
import cv2
import math
import random
import os
import xml.etree.ElementTree as ET
from PIL import Image
name_classes = ['hqc'] # 类别名,可以更改为对应的voc类别名称即可
def resize_xml(xml_file_name,new_xml_name,original_jpg_name,original_png_name,new_jpg_name,new_png_name,new_size=(224,224),original_size=(256,256)):
original_jpg =Image.open(original_jpg_name)
cv_original_jpg = cv2.cvtColor(np.asarray(original_jpg), cv2.COLOR_RGB2BGR)
cv_original_jpg= cv2.resize(cv_original_jpg,(224,224))
# 16是边缘填充的长度,图片先resize为224大小,则再变回256,则四边都需要填充16
new_jpg =cv2.copyMakeBorder(cv_original_jpg, 16, 16, 16, 16, cv2.BORDER_CONSTANT, value=(0, 0, 0)) # 填充保持图片的大小不变。
cv2.imencode('.jpg', new_jpg)[1].tofile(new_jpg_name)
original_png =Image.open(original_png_name)
cv_original_png = cv2.cvtColor(np.asarray(original_png), cv2.COLOR_RGB2BGR)
cv_original_png = cv2.resize(cv_original_png, (224, 224))
new_png = cv2.copyMakeBorder(cv_original_png, 16, 16, 16, 16, cv2.BORDER_CONSTANT