给定两个表示两个整数值的二进制字符串,求两个字符串的乘积。例如,如果第一个位串是“1100”,第二个位串是“1010”,则输出应为 120。
为了简单起见,让两个字符串的长度相同并为n。
一种天真的方法是遵循我们在学校学习的过程。逐一取出第二个数字的所有位并将其与第一个数字的所有位相乘。最后将所有乘法相加。该算法需要 O(n^2) 时间。
使用Divide and Conquer,我们可以以较低的时间复杂度将两个整数相乘。我们将给定的数字分成两半。设给定数字为 X 和 Y。
为简单起见,我们假设 n 是偶数
X = Xl*2 n/2 + Xr [Xl 和 Xr 包含 X 的最左边和最右边的 n/2 位]
Y = Yl*2 n/2 + Yr [Yl 和 Yr 包含 Y 的最左边和最右边的 n/2 位]
乘积 XY 可以写如下。
XY = (Xl*2 n/2 + Xr)(Yl*2 n/2 + Yr)
= 2 n XlYl + 2 n/2 (XlYr + XrYl) + XrYr
如果我们看一下上面的公式,有四次大小为n/2的乘法,所以我们基本上将大小为n的问题分为四个大小为n/2的子问题。但这并没有帮助,因为递归 T(n) = 4T(n/2) + O(n) 的解是 O(n^2)。该算法的棘手部分是将中间两项更改为其他形式,这样只需一次额外的乘法就足够了。以下是中间两项的棘手表达。
XlYr + XrYl = (Xl + Xr)(Yl + Yr) - XlYl- XrYr
所以 XY 的最终值变为
XY = 2 n XlYl + 2 n/2 * [(Xl + Xr)(Yl + Yr) - XlYl - XrYr] + XrYr
通过上述技巧,递推式变为 T(n) = 3T(n/2) + O(n) 并且该递推式的解为 O(n 1.59 )。
如果输入字符串的长度不同且不均匀怎么办?为了处理不同长度的情况,我们在开头附加 0。为了处理奇数长度,我们将floor(n/2)位放在左半部分,将ceil(n/2)位放在右半部分。因此 XY 的表达式变为以下形式。
XY = 2 2ceil(n/2) XlYl + 2 ceil(n/2) * [(Xl + Xr)(Yl + Yr) - XlYl - XrYr] + XrYr
上述算法称为Karatsuba算法,它可以用于任何基础。
以下是上述算法的 C++ 实现:
// C++ implementation of Karatsuba algorithm for bit string multiplication.
#include<iostream>
#include<stdio.h>
using namespace std;
// FOLLOWING TWO FUNCTIONS ARE COPIED FROM http://goo.gl/q0OhZ
// Helper method: given two unequal sized bit strings, converts them to
// same length by adding leading 0s in the smaller string. Returns the
// the new length
int makeEqualLength(string &str1, string &str2)
{
int len1 = str1.size();
int len2 = str2.size();
if (len1 < len2)
{
for (int i = 0 ; i < len2 - len1 ; i++)
str1 = '0' + str1;
return len2;
}
else if (len1 > len2)
{
for (int i = 0 ; i < len1 - len2 ; i++)
str2 = '0' + str2;
}
return len1; // If len1 >= len2
}
// The main function that adds two bit sequences and returns the addition
string addBitStrings( string first, string second )
{
string result; // To store the sum bits
// make the lengths same before adding
int length = makeEqualLength(first, second);
int carry = 0; // Initialize carry
// Add all bits one by one
for (int i = length-1 ; i >= 0 ; i--)
{
int firstBit = first.at(i) - '0';
int secondBit = second.at(i) - '0';
// boolean expression for sum of 3 bits
int sum = (firstBit ^ secondBit ^ carry)+'0';
result = (char)sum + result;
// boolean expression for 3-bit addition
carry = (firstBit&secondBit) | (secondBit&carry) | (firstBit&carry);
}
// if overflow, then add a leading 1
if (carry) result = '1' + result;
return result;
}
// A utility function to multiply single bits of strings a and b
int multiplyiSingleBit(string a, string b)
{ return (a[0] - '0')*(b[0] - '0'); }
// The main function that multiplies two bit strings X and Y and returns
// result as long integer
long int multiply(string X, string Y)
{
// Find the maximum of lengths of x and Y and make length
// of smaller string same as that of larger string
int n = makeEqualLength(X, Y);
// Base cases
if (n == 0) return 0;
if (n == 1) return multiplyiSingleBit(X, Y);
int fh = n/2; // First half of string, floor(n/2)
int sh = (n-fh); // Second half of string, ceil(n/2)
// Find the first half and second half of first string.
// Refer http://goo.gl/lLmgn for substr method
string Xl = X.substr(0, fh);
string Xr = X.substr(fh, sh);
// Find the first half and second half of second string
string Yl = Y.substr(0, fh);
string Yr = Y.substr(fh, sh);
// Recursively calculate the three products of inputs of size n/2
long int P1 = multiply(Xl, Yl);
long int P2 = multiply(Xr, Yr);
long int P3 = multiply(addBitStrings(Xl, Xr), addBitStrings(Yl, Yr));
// Combine the three products to get the final result.
return P1*(1<<(2*sh)) + (P3 - P1 - P2)*(1<<sh) + P2;
}
// Driver program to test above functions
int main()
{
printf ("%ld\n", multiply("1100", "1010"));
printf ("%ld\n", multiply("110", "1010"));
printf ("%ld\n", multiply("11", "1010"));
printf ("%ld\n", multiply("1", "1010"));
printf ("%ld\n", multiply("0", "1010"));
printf ("%ld\n", multiply("111", "111"));
printf ("%ld\n", multiply("11", "11"));
}
输出
120
60
30
10
0
49
9
时间复杂度:上述解决方案的时间复杂度为 O(n log 2 3 ) = O(n 1.59 )。
使用另一种分而治之算法,即快速傅里叶变换,可以进一步提高乘法的时间复杂度。我们很快将作为单独的帖子讨论快速傅立叶变换。
辅助空间: O(n)
练习:
上面的程序返回一个 long int 值,不适用于大字符串。扩展上面的程序以返回字符串而不是 long int 值。
解决方案:
大数的乘法过程是计算机科学中的一个重要问题。给定方法使用分而治之的方法。
运行代码来查看普通二元乘法和 Karatsuba 算法的时间复杂度比较。 您可以在此存储库
中查看完整代码
例子:
第一个二进制输入:101001010101010010101001010100101010010101010010101第二个二进制输入:101001010101010010101001010100101010010101010010101十进制输出:无可呈现的输出:2.1148846e+30
第一个二进制输入:1011第二个二进制输入:1000十进制输出:88输出:5e-05
#include <iostream>
#include <ctime>
#include <fstream>
#include <string.h>
#include <cmath>
#include <sstream>
using namespace std;
// classical method class
class BinaryMultiplier
{
public:
string MakeMultiplication(string,string);
string MakeShifting(string,int);
string addBinary(string,string);
void BinaryStringToDecimal(string);
};
// karatsuba method class
class Karatsuba
{
public:
int lengthController(string &,string &);
string addStrings(string,string);
string multiply(string,string);
string DecimalToBinary(long long int);
string Subtraction(string,string);
string MakeShifting(string,int);
};
// this function get strings and go over str2 bit
// if it sees 1 it calculates the shifted version according to position bit
// Makes add operation for binary strings
// returns result string
string BinaryMultiplier::MakeMultiplication(string str1, string str2)
{
string allSum = "";
for (int j = 0 ; j<str2.length(); j++)
{
int secondDigit = str2[j] - '0';
if (secondDigit == 1)
{
string shifted = MakeShifting(str1,str2.size()-(j+1));
allSum = addBinary(shifted, allSum);
}
else
{
continue;
}
}
return allSum;
}
// this function adds binary strings with carry
string BinaryMultiplier::addBinary(string a, string b)
{
string result = "";
int s = 0;
int i = a.size() - 1;
int j = b.size() - 1;
while (i >= 0 || j >= 0 || s == 1)
{
s += ((i >= 0)? a[i] - '0': 0);
s += ((j >= 0)? b[j] - '0': 0);
result = char(s % 2 + '0') + result;
s /= 2;
i--;
j--;
}
return result;
}
// this function shifts the given string according to given number
// returns shifted version
string BinaryMultiplier::MakeShifting(string str, int stepnum)
{
string shifted = str;
for (int i = 0 ; i < stepnum ; i++)
shifted = shifted + '0';
return shifted;
}
// this function converts Binary String Number to Decimal Number
// After 32 bits it gives 0 because it overflows the size of int
void BinaryMultiplier::BinaryStringToDecimal(string result)
{
cout<<"Binary Result : "<<result<<endl;
unsigned long long int val = 0;
for (int i = result.length()-1; i >= 0; i--)
{
if (result[i] == '1')
{
val += pow(2,(result.length()-1)-i);
}
}
cout<<"Decimal Result (Not proper for Large Binary Numbers):" <<val<<endl;
}
// this function controls lengths of strings and make their lengths equal
// returns the maximum length
int Karatsuba::lengthController(string &str1, string &str2)
{
int len1 = str1.size();
int len2 = str2.size();
if (len1 < len2)
{
for (int i = 0 ; i < len2 - len1 ; i++)
str1 = '0' + str1;
return len2;
}
else if (len1 > len2)
{
for (int i = 0 ; i < len1 - len2 ; i++)
str2 = '0' + str2;
}
return len1;
}
// this function add strings with carry
// uses one by one bit addition methodology
// returns result string
string Karatsuba::addStrings(string first, string second)
{
string result; // To store the sum bits
// make the lengths same before adding
int length = lengthController(first, second);
int carry = 0; // Initialize carry
// Add all bits one by one
for (int i = length-1 ; i >= 0 ; i--)
{
int firstBit = first.at(i) - '0';
int secondBit = second.at(i) - '0';
// boolean expression for sum of 3 bits
int sum = (firstBit ^ secondBit ^ carry)+'0';
result = (char)sum + result;
// Boolean expression for 3-bit addition
carry = (firstBit&secondBit) | (secondBit&carry) | (firstBit&carry);
}
// if overflow, then add a leading 1
if (carry)
{
result = '1' + result;
}
return result;
}
// this function converts decimal number to binary string
string Karatsuba::DecimalToBinary(long long int number)
{
string result = "";
if (number <= 0)
{
return "0";
}
else
{
int i = 0;
while (number > 0)
{
long long int num= number % 2;
stringstream ss;
ss<<num;
result = ss.str() + result;
number = number / 2;
i++;
}
return result;
}
}
// this function makes binary string subtraction with overflow
string Karatsuba::Subtraction(string lhs, string rhs)
{
int length = lengthController(lhs, rhs);
int diff;
string result;
for (int i = length-1; i >= 0; i--)
{
diff = (lhs[i]-'0') - (rhs[i]-'0');
if (diff >= 0)
{
result = DecimalToBinary(diff) + result;
}
else
{
for (int j = i-1; j>=0; j--)
{
lhs[j] = ((lhs[j]-'0') - 1) % 10 + '0';
if (lhs[j] != '1')
{
break;
}
}
result = DecimalToBinary(diff+2) + result;
}
}
return result;
}
// this function makes shifting
string Karatsuba::MakeShifting(string str, int stepnum)
{
string shifted = str;
for (int i = 0 ; i < stepnum ; i++)
shifted = shifted + '0';
return shifted;
}
// this function is the core of the Karatsuba
// divides problem into 4 subproblems
// recursively multiplies them
// returns the result string
string Karatsuba::multiply(string X, string Y)
{
int n = lengthController(X, Y);
if (n == 1) return ((Y[0]-'0' == 1) && (X[0]-'0' == 1)) ? "1" : "0";
int fh = n/2; // First half of string, floor(n/2)
int sh = (n-fh); // Second half of string, ceil(n/2)
// Find the first half and second half of first string.
string Xl = X.substr(0, fh);
string Xr = X.substr(fh, sh);
// Find the first half and second half of second string
string Yl = Y.substr(0, fh);
string Yr = Y.substr(fh, sh);
// Recursively calculate the three products of inputs of size n/2
string P1 = multiply(Xl, Yl);
string P2 = multiply(Xr, Yr);
string P3 = multiply(addStrings(Xl, Xr), addStrings(Yl, Yr));
// return added string version
return addStrings(addStrings(MakeShifting(P1, 2*(n-n/2)),P2),MakeShifting(Subtraction(P3,addStrings(P1,P2)), n-(n/2)));
}
int main(int argc, const char * argv[])
{
// get the binary numbers as strings
string firstNumber,secondNumber;
cout<<"Please give the First Binary number : ";
cin>>firstNumber;
cout<<endl<<"Please give the Second Binary number : ";
cin>>secondNumber;
cout << endl;
// make the initial lengths equal by adding zeros
int len1 = firstNumber.size();
int len2 = secondNumber.size();
int general_len = firstNumber.size();
if (len1 < len2)
{
for (int i = 0 ; i < len2 - len1 ; i++)
firstNumber = '0' + firstNumber;
general_len = firstNumber.size();
}
else if (len1 > len2)
{
for (int i = 0 ; i < len1 - len2 ; i++)
secondNumber = '0' + secondNumber;
general_len = secondNumber.size();
}
// In classical methodology Binary String Multiplication
cout<<"Classical Algorithm : "<<endl;
BinaryMultiplier newobj;
const clock_t classical_time = clock();
string classic = newobj.MakeMultiplication(firstNumber, secondNumber);
cout << float( clock () - classical_time ) / CLOCKS_PER_SEC<<endl<<endl;
float c_time = float( clock () - classical_time ) / CLOCKS_PER_SEC;
newobj.BinaryStringToDecimal(classic);
// Using Karatsuba Multiplication Algorithm Binary String Multiplication
cout<<endl<<"Karatsuba Algorithm : "<<endl;
Karatsuba obj;
const clock_t karatsuba_time = clock();
string karatsuba = obj.multiply(firstNumber, secondNumber);
cout << float( clock () - karatsuba_time ) / CLOCKS_PER_SEC<<endl<<endl;
float k_time = float( clock () - classical_time ) / CLOCKS_PER_SEC;
newobj.BinaryStringToDecimal(karatsuba);
return 0;
}
时间复杂度:
二进制字符串乘法的经典方法和Karatsuba方法的时间复杂度都是O(n^2)。
在经典方法中,时间复杂度为O(n^2),因为循环迭代了 n 次。 addBinary() 方法的时间复杂度是恒定的,因为循环最多运行两次迭代。
在 Karatsuba 方法中,时间复杂度为O(n^2),因为对三个产品中的每一个都会递归调用 Karasuba 类的“乘法”方法。 addStrings() 方法的时间复杂度是恒定的,因为循环最多运行两次迭代。
辅助空间:
二进制字符串乘法的经典方法和Karatsuba方法的辅助空间都是O(n)。
在经典方法中,辅助空间是O(n),因为循环迭代了 n 次并且使用单个字符串来存储结果。addBinary() 方法的空间复杂度是恒定的,因为循环最多运行两次迭代。
在Karatsuba 方法中,辅助空间为O(n),因为Karatsuba 类的“乘法”方法是针对三个乘积中的每一个递归调用的。