LlamaIndex 实现 RAG(二)- 文档解析

RAG 中最关键的就是知识库构建,知识库主要的作用就是为大模型提供内企业内部知识或者新的知识。在 RAG 中,知识存储通常是把文档进行拆分为块 (Chunk),并通过 Embedding 模型将文档块转为向量型数据,并将向量数据进行保存,为后续的搜索提供数据。文档通常分为多种类型,比较常见的文档类型包括 Work、PDF、Markdown,对于 Excel 这种表格型文档,也可以转为 Markdown 类型的文档,本文将使用 LlamaIndex 对不同文档进行切分、向量化和并进行搜索。

文档切分

先来看上一篇文章中所切分的 PDF 文档,文档总共13 页,分析一下 LlamaIndex 的切分结果。

    # 读取 "./data" 目录中的数据并加载为文档对象
    documents = SimpleDirectoryReader("./data").load_data()

文件被解析成了 13 个文档,每页转成了一个文档

在这里插入图片描述
PDF 转换代码如下
在这里插入图片描述
LamaIndex 中 Document 都是 Node,对于文字类型的节点,节点类型为 TextNode,对于图片,对应的节点类型为 ImageNode,I

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值