Meta-Learning Requires Meta-Augmentation

本文探讨了NIPS2020论文Meta-Learning Requires Meta-Augmentation,该论文针对小样本图像分类中数据与模型不匹配的问题,提出了元增强方法。通过信息理论框架增加数据的随机性,以减少过拟合并提高模型的泛化能力。这种方法旨在通过数据增强解决深度学习在小样本情况下的性能瓶颈。

最近看了 NIPS 2020 paper Meta-Learning Requires Meta-Augmentation。记录一下

看到meta learning就知道本文的主要任务应该就是小样本图像分类任务,Requires Meta-Augmentation则是针对meta learning 处理小样本图像分类任务时的不足而提出改进方案,小样本图像分类的主要问题还是由于数据与网络不匹配所造成的。一方面是小样本图像分类的设定导致每一个任务的数据量过少、而深度学习模型往往需要很多的数据进行拟合。数据与模型之间的不匹配导致模型会出现一些问题:模型的泛化能力弱或过拟合等。
Requires Meta-Augmentation则是本文根据元学习处理小样本图像分类时的不足而提出的方法。很直观的想法,数据量不够就增加数据。数据增强是一个有效的方法,对小样本图像分类任务来说样本少就增加样本。增加样本的方法有很多:借助外部数据、GAN等方法都能起到数据增强的作用。本文提出用信息理论框架来讨论元增强,这是一种增加随机性的方法,可以有效降低过拟合概率以及提升模型的泛化能力。
文章链接https://proceedings.neurips.cc//paper/2020/file/3e5190eeb51ebe6c5bbc54ee8950c548-Paper.pdf
codehttps://github.com/google-research/google-research

# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # DeiT: https://github.com/facebookresearch/deit # BEiT: https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- import argparse import datetime import json import numpy as np import os import time from pathlib import Path import torch import torch.backends.cudnn as cudnn import tqdm from torch.utils.tensorboard import SummaryWriter import timm # assert timm.__version__ == "0.3.2" # version check from timm.models.layers import trunc_normal_ from timm.data.mixup import Mixup from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy import util.lr_decay as lrd import util.misc as misc from util.datasets import build_dataset from util.pos_embed import interpolate_pos_embed from util.misc import NativeScalerWithGradNormCount as NativeScaler import models_mae import models_vit from engine_finetune import train_one_epoch import MyDataset import torchvision.transforms as transforms import utils import torch.nn as nn from torch.autograd import Variable import wandb import scipy.io as io from utils_sig import * def get_args_parser(): parser = argparse.ArgumentParser('MAE fine-tuning for image classification', add_help=False) parser.add_argument('--batch_size', default=64, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') parser.add_argument('--epochs', default=20, type=int) parser.add_argument('--accum_iter', default=1, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') # Model parameters parser.add_argument('--model', default='vit_base_patch16', type=str, metavar='MODEL', help='Name of model to train') parser.add_argument('--input_size', default=224, type=int, help='images input size') parser.add_argument('--drop_path', type=float, default=0.1, metavar='PCT', help='Drop path rate (default: 0.1)') # Optimizer parameters parser.add_argument('--clip_grad', type=float, default=None, metavar='NORM', help='Clip gradient norm (default: None, no clipping)') parser.add_argument('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') parser.add_argument('--lr', type=float, default=None, metavar='LR', help='learning rate (absolute lr)') parser.add_argument('--blr', type=float, default=1e-3, metavar='LR', help='base learning rate: absolute_lr = base_lr * total_batch_size / 256') parser.add_argument('--layer_decay', type=float, default=0.75, help='layer-wise lr decay from ELECTRA/BEiT') parser.add_argument('--min_lr', type=float, default=1e-6, metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') parser.add_argument('--warmup_epochs', type=int, default=50, metavar='N', help='epochs to warmup LR') # Augmentation parameters parser.add_argument('--color_jitter', type=float, default=None, metavar='PCT', help='Color jitter factor (enabled only when not using Auto/RandAug)') parser.add_argument('--aa', type=str, default='rand-m9-mstd0.5-inc1', metavar='NAME', help='Use AutoAugment policy. "v0" or "original". " + "(default: rand-m9-mstd0.5-inc1)'), parser.add_argument('--smoothing', type=float, default=0.1, help='Label smoothing (default: 0.1)') # * Random Erase params parser.add_argument('--reprob', type=float, default=0.25, metavar='PCT', help='Random erase prob (default: 0.25)') parser.add_argument('--remode', type=str, default='pixel', help='Random erase mode (default: "pixel")') parser.add_argument('--recount', type=int, default=1, help='Random erase count (default: 1)') parser.add_argument('--resplit', action='store_true', default=False, help='Do not random erase first (clean) augmentation split') # * Mixup params parser.add_argument('--mixup', type=float, default=0, help='mixup alpha, mixup enabled if > 0.') parser.add_argument('--cutmix', type=float, default=0, help='cutmix alpha, cutmix enabled if > 0.') parser.add_argument('--cutmix_minmax', type=float, nargs='+', default=None, help='cutmix min/max ratio, overrides alpha and enables cutmix if set (default: None)') parser.add_argument('--mixup_prob', type=float, default=1.0, help='Probability of performing mixup or cutmix when either/both is enabled') parser.add_argument('--mixup_switch_prob', type=float, default=0.5, help='Probability of switching to cutmix when both mixup and cutmix enabled') parser.add_argument('--mixup_mode', type=str, default='batch', help='How to apply mixup/cutmix params. Per "batch", "pair", or "elem"') # * Finetuning params parser.add_argument('--finetune', default='/home/emo/PycharmProjects/rPPG-MAE-main/pretrained_model/STMap_UBFC-100.pth', help='finetune from checkpoint') parser.add_argument('--global_pool', action='store_true', default= False) # parser.set_defaults(global_pool=True) parser.add_argument('--cls_token', action='store_false', dest='global_pool', help='Use class token instead of global pool for classification') # Dataset parameters parser.add_argument('--nb_classes', default=224, type=int, help='number of the classification types') parser.add_argument('--output_dir', default='/home/emo/PycharmProjects/rPPG-MAE-main/finetune_log/my_UBFC_VV', help='path where to save, empty for no saving') parser.add_argument('--log_dir', default='/home/emo/PycharmProjects/rPPG-MAE-main/finetune_log/my_UBFC_VV', help='path where to tensorboard log') parser.add_argument('--device', default='cuda', help='device to use for training / testing') parser.add_argument('--seed', default=0, type=int) parser.add_argument('--resume', default='', help='resume from checkpoint') parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch') parser.add_argument('--eval', action='store_true', help='Perform evaluation only') parser.add_argument('--dist_eval', action='store_true', default=False, help='Enabling distributed evaluation (recommended during training for faster monitor') parser.add_argument('--num_workers', default=8, type=int) parser.add_argument('--pin_mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.') parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem') parser.set_defaults(pin_mem=True) # distributed training parameters parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes') parser.add_argument('--local_rank', default=-1, type=int) parser.add_argument('--dist_on_itp', action='store_true') parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training') parser.add_argument('--distributed', action='store_true') parser.add_argument('--dataname', type=str, default="UBFC-PHYS", help='log and save model name') parser.add_argument('--STMap_name1', type=str, default="STMap.png", help='log and save model name') parser.add_argument('--STMap_name2', type=str, default="STMap_YUV_Align_CSI_CHROM.png", help='log and save model name') parser.add_argument('-n', '--frames_num', dest='frames_num', type=int, default=224, help='the num of frames') parser.add_argument('-fn', '--fold_num', type=int, default=5, help='fold_num', dest='fold_num') parser.add_argument('-fi', '--fold_index', type=int, default=0, help='fold_index:0-fold_num', dest='fold_index') parser.add_argument('--log', type=str, default="supervise_VIT_VIPL_LossCrossEntropy", help='log and save model name') parser.add_argument('--loss_type', type=str, default="rppg", help='loss type') parser.add_argument('-rD', '--reData', dest='reData', type=int, default=0, help='re Data') parser.add_argument('--in_chans', type=int, default=3) parser.add_argument('--semi', type=str, default='') return parser def main(args): # misc.init_distributed_mode(args) if args.dataname=='VIPL': fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/VIPL_new' # change to your own path. # saveRoot = r'/scratch/project_2006419/data/VIPL_Index/fs_VIPL_STMap' + str(args.fold_num) + str(args.fold_index) # change to your own path. saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/VIPL_finetune' # change to your own path. if args.dataname=='PURE': fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/PURE' # change to your own path. saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/PURE_finetune' # change to your own path. if args.dataname=='UBFC': fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/UBFC-rPPG' # change to your own path. saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/UBFC_finetune' # change to your own path. if args.dataname == 'UBFC-PHYS': fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/UBFC-PHYS' # change to your own path. saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/UBFC-PHYS_Train' # change to your own path. if args.dataname == 'VV': fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/VV' # change to your own path. saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/VV_finetune' # change to your own path. if args.dataname == 'V4V': fileRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/Original/V4V' # change to your own path. saveRoot = r'/home/emo/PycharmProjects/rPPG-MAE-main/Data/V4V_finetune' # change to your own path. # wandb.init(project='rppg-mae'+ args.dataname) # wandb.config = { # "epochs": args.epochs, # "batch_size": args.batch_size # } best_mae = 20 frames_num = args.frames_num dataname = args.dataname fold_num = args.fold_num normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) toTensor = transforms.ToTensor() # resize = transforms.Resize(size=(64, frames_num)) resize = transforms.Resize(size=(frames_num, frames_num)) print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__)))) print("{}".format(args).replace(', ', ',\n')) device = torch.device(args.device) # device = 'cpu' # fix the seed for reproducibility seed = args.seed + misc.get_rank() torch.manual_seed(seed) np.random.seed(seed) cudnn.benchmark = True # 数据集 if args.reData == 1: if args.semi: test_index, train_index, semi_withlabel_index, semi_withoutlabel_index = MyDataset.CrossValidation_semi( fileRoot, fold_num, fold_index=0, semi=2, semi_index=0) semi_with = MyDataset.getIndex(fileRoot, semi_withlabel_index, saveRoot + '_1Train50%', 'STMap.png', 5, frames_num) semi_without = MyDataset.getIndex(fileRoot, semi_withoutlabel_index, saveRoot + '_2Train50%', 'STMap.png', 5, frames_num) else: test_index, train_index = MyDataset.CrossValidation(fileRoot, fold_num=5, fold_index=0) Train_Indexa = MyDataset.getIndex(fileRoot, train_index, saveRoot + '_Train', 'STMap.png', 5, frames_num) Test_Indexa = MyDataset.getIndex(fileRoot, test_index, saveRoot + '_Test', 'STMap.png', 5, frames_num) if args.semi: dataset_train = MyDataset.Data_DG(root_dir=(saveRoot + '_Train' + args.semi), dataName=dataname, STMap1=args.STMap_name1, STMap2=args.STMap_name2, \ in_chans=args.in_chans, frames_num=frames_num, transform=transforms.Compose([resize, toTensor, normalize])) dataset_val = MyDataset.Data_DG(root_dir=(saveRoot + '_Test'), dataName=dataname, STMap1=args.STMap_name1, STMap2=args.STMap_name2, \ in_chans=args.in_chans, frames_num=frames_num, transform=transforms.Compose([resize, toTensor, normalize])) else: dataset_train = MyDataset.Data_DG(root_dir=(saveRoot + '_Train'), dataName=dataname, STMap1=args.STMap_name1, STMap2=args.STMap_name2, \ in_chans=args.in_chans, frames_num=frames_num, transform=transforms.Compose([resize, toTensor, normalize])) dataset_val = MyDataset.Data_DG(root_dir=(saveRoot + '_Test'), dataName=dataname, STMap1=args.STMap_name1, STMap2=args.STMap_name2, \ in_chans=args.in_chans, frames_num=frames_num, transform=transforms.Compose([resize, toTensor, normalize])) print('trainLen:', len(dataset_train), 'testLen:', len(dataset_val)) print('fold_num:', args.fold_num, 'fold_index', args.fold_index) if args.distributed: num_tasks = misc.get_world_size() global_rank = misc.get_rank() sampler_train = torch.utils.data.DistributedSampler( dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True ) print("Sampler_train = %s" % str(sampler_train)) if args.dist_eval: if len(dataset_val) % num_tasks != 0: print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. ' 'This will slightly alter validation results as extra duplicate entries are added to achieve ' 'equal num of samples per-process.') sampler_val = torch.utils.data.DistributedSampler( dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias else: sampler_val = torch.utils.data.SequentialSampler(dataset_val) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) os.makedirs(args.log_dir, exist_ok=True) log_writer = SummaryWriter(log_dir=args.log_dir) data_loader_train = torch.utils.data.DataLoader( dataset_train, sampler=sampler_train, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=True, ) data_loader_val = torch.utils.data.DataLoader( dataset_val, sampler=sampler_val, batch_size=args.batch_size, num_workers=args.num_workers, pin_memory=args.pin_mem, drop_last=False ) mixup_fn = None mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: print("Mixup is activated!") mixup_fn = Mixup( mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax, prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode, label_smoothing=args.smoothing, num_classes=args.nb_classes) model = models_vit.__dict__[args.model]( num_classes=args.nb_classes, drop_path_rate=args.drop_path, global_pool=args.global_pool, in_chans=args.in_chans ) if args.finetune: checkpoint = torch.load(args.finetune, map_location='cpu') print("Load pre-trained checkpoint from: %s" % args.finetune) checkpoint_model = checkpoint['model'] state_dict = model.state_dict() for k in ['head.weight', 'head.bias']: if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape: print(f"Removing key {k} from pretrained checkpoint") del checkpoint_model[k] # interpolate position embedding interpolate_pos_embed(model, checkpoint_model) # load pre-trained model msg = model.load_state_dict(checkpoint_model, strict=False) print(msg) if args.global_pool: assert set(msg.missing_keys) == {'head.weight', 'head.bias', 'fc_norm.weight', 'fc_norm.bias'} else: assert set(msg.missing_keys) == {'head.weight', 'head.bias'} # manually initialize fc layer trunc_normal_(model.head.weight, std=2e-5) model.to(device) model_without_ddp = model n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print("Model = %s" % str(model_without_ddp)) print('number of params (M): %.2f' % (n_parameters / 1.e6)) eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() if args.lr is None: # only base_lr is specified args.lr = args.blr * eff_batch_size / 256 print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) print("actual lr: %.2e" % args.lr) print("accumulate grad iterations: %d" % args.accum_iter) print("effective batch size: %d" % eff_batch_size) if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module # build optimizer with layer-wise lr decay (lrd) param_groups = lrd.param_groups_lrd(model_without_ddp, args.weight_decay, no_weight_decay_list=model_without_ddp.no_weight_decay(), layer_decay=args.layer_decay ) optimizer = torch.optim.AdamW(param_groups, lr=args.lr) loss_scaler = NativeScaler() if mixup_fn is not None: # smoothing is handled with mixup label transform criterion = SoftTargetCrossEntropy() elif args.smoothing > 0.: criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing) else: criterion = torch.nn.CrossEntropyLoss() print("criterion = %s" % str(criterion)) misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) print(f"Start training for {args.epochs} epochs") start_time = time.time() # for epoch in tqdm.tqdm(range(args.start_epoch, args.epochs)): for epoch in range(args.start_epoch, args.epochs): if args.distributed: data_loader_train.sampler.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, loss_scaler, args.clip_grad, mixup_fn, log_writer=log_writer, args=args ) if args.output_dir: misc.save_model( args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch) # test # model.eval() # HR_pr_temp = [] # 测试集所有预测心率 # HR_rel_temp = [] # for step, (data1, bvp, _) in enumerate(data_loader_val): # # data = Variable(data).float().to(device=device) # data1 = Variable(data1).float().to(device=device) # # data2 = Variable(data2).float().to(device=device) # bvp = Variable(bvp).float().to(device=device) # # HR_rel = Variable(HR_rel).float().to(device=device) # Wave = bvp.unsqueeze(dim=1) # STMap = data1[:, :, :, 0:frames_num] # Wave = Wave[:, :, 0:frames_num] # b, _, _ = Wave.size() # # outputs = model(data1) # [B,220] # if args.loss_type == 'rppg': # loss_func_rPPG = utils.P_loss3().to(device) # loss_func_SP = utils.SP_loss(device, low_bound=36, high_bound=240, clip_length=args.frames_num).to( # device) # _, hr_pr = loss_func_SP(outputs.unsqueeze(dim=1), HR_rel) # _, hr_rel = loss_func_SP(Wave, HR_rel) # loss = loss_func_rPPG(outputs.unsqueeze(dim=1), Wave) # HR_pr_temp.extend(hr_pr.data.cpu().numpy()) # HR_rel_temp.extend(hr_rel.data.cpu().numpy()) # if args.loss_type == 'SP': # loss_func_SP = utils.SP_loss(device, low_bound=36, high_bound=240, clip_length=args.frames_num).to( # device) # loss, hr_pre = loss_func_SP(outputs.unsqueeze(dim=1), HR_rel) # HR_pr_temp.extend(hr_pre.data.cpu().numpy()) # HR_rel_temp.extend(HR_rel.data.cpu().numpy()) # print('loss_test: ', loss) # ME, STD, MAE, RMSE, MER, P = utils.MyEval(HR_pr_temp, HR_rel_temp) # wandb.log({"MAE": MAE, 'epoch': epoch}) # if best_mae > MAE: # best_mae = MAE # io.savemat(args.log + '/' + 'HR_pr.mat', {'HR_pr': HR_pr_temp}) # 训练结束后保存着所有EPOCHE里效果最好的预测心率 # io.savemat(args.log + '/' + 'HR_rel.mat', {'HR_rel': HR_rel_temp}) # 保存效果最好的真实心率 # print('save best predict HR') log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, # **{f'test_{k}': v for k, v in test_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters} if args.output_dir and misc.is_main_process(): if log_writer is not None: log_writer.flush() with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: f.write(json.dumps(log_stats) + "\n") total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) if __name__ == '__main__': args = get_args_parser() args = args.parse_args() args.decoder_embed_dim = 128 args.decoder_depth = 8 args.norm_pix_loss = False args.reData = 0 # args.output_dir = '/media/emo/WD_5T/UBFC/UBFC-phys/rppg-mae_log' # args.log_dir = '/media/emo/WD_5T/UBFC/UBFC-phys/rppg-mae_log' args.finetune = '/home/emo/PycharmProjects/rPPG-MAE-main/pretrained_model/STMap_UBFC-100.pth' # args.finetune = '/home/emo/PycharmProjects/rPPG-MAE-main/pretrained_model/STMap_PURE-100.pth' # args.finetune = '/home/emo/PycharmProjects/rPPG-MAE-main/pretrained_model/PC-STMap_VIPL-399.pth' # args.in_chans = 6 #torch.Size([768, 6, 16, 16]) from checkpoint PC-STMap_VIPL-399.pth args.epochs = 200 args.dataname = 'VV' if args.output_dir: Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args) 这个是生成checkpoints.pth文件的代码
07-29
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VisionX Lab

你的鼓励将是我更新的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值