基于pytorch的segnet实现,使用camvid数据集训练

程序结构基本与https://blog.youkuaiyun.com/haohulala/article/details/107660273这篇文章相似,有什么问题也可以参考这篇文章。

import torch
from torch import nn
import torch.nn.functional as f
import torchvision
import torchvision.transforms as tfs
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torchvision.models as models
import numpy as np
import os
from PIL import Image
import matplotlib.pyplot as plt
from datetime import datetime
# VOC数据集中对应的标签
classes = ["Animal", "Archway","Bicyclist","Bridge","Building","Car","CartLuggagePram",
          "Child","Column_Pole", "Fence", "LaneMkgsDriv", "LaneMkgsNonDriv", "Misc_Text",
          "MotorcycleScooter", "OtherMoving", "ParkingBlock", "Pedestrian", "Road", "RoadShoulder",
          "Sidewalk", "SignSymbol", "Sky", "SUVPickupTruck", "TrafficCone", "TrafficLight",
          "Train", "Tree", "Truck_Bus", "Tunnel", "VegetationMisc", "Void", "Wall"]

# 各种标签所对应的颜色
colormap = [[64,128,64],[192,0,128],[0,128,192],[0,128,64],[128,0,0],[64,0,128],
           [64,0,192],[192,128,64],[192,192,128],[64,64,128],[128,0,192],[192,0,64],
           [128,128,64],[192,0,192],[128,64,64],[64,192,128],[64,64,0],[128,64,128],
           [128,128,192],[0,0,192],[192,128,128],[128,128,128],[64,128,192],[0,0,64],
           [0,64,64],[192,64,128],[128,128,0],[192,128,192],[64,0,64],[192,192,0],
           [0,0,0],[64,192,0]]

num_classes = len(classes)
print(num_classes)
print(len(colormap))
32
32
data_root = "./data"
ROOT = "./data/SegNet/CamVid"

# 开始读取数据
def read_image(mode="train", val=False):
    if(mode=="train"):    # 加载训练数据
        filename = ROOT + "/train.txt"
    elif(mode == "test"):    # 加载测试数据
        filename = ROOT + "/test.txt"
    elif(mode == "val"):
        filename = ROOT + "/val.txt"
    else:
        print("没有这个mod,请检查代码是否写错")
    data = []
    label = []
    with open(filename, "r") as f:
        images = f.read().split()
        for i in range(len(images)):
            if(i%2 == 0):
                data.append(data_root+images[i])
            else:
                label.append(data_root+images[i])
    if(val==True):
        if(mode == "train"):    # 将验证集也读入训练数据
            filename = ROOT + "/val.txt"
        with open(filename, "r") as f:
            images = f.read().split()
            for i in range(len(images)):
                if(i%2 == 0):
                    data.append(data_root+images[i])
                else:
                    label.append(data_root+images[i])
                
    print(mode+":读取了"+str(len(data))+"张图片")
    print(mode+":读取了"+str(len(label))+"张图片的标签")
    return data, label



data, label = read_image("train")
print(data[:10], label[:10])


train:读取了367张图片
train:读取了367张图片的标签
['./data/SegNet/CamVid/train/0001TP_006690.png', './data/SegNet/CamVid/train/0001TP_006720.png', './data/SegNet/CamVid/train/0001TP_006750.png', './data/SegNet/CamVid/train/0001TP_006780.png', './data/SegNet/CamVid/train/0001TP_006810.png', './data/SegNet/CamVid/train/0001TP_006840.png', './data/SegNet/CamVid/train/0001TP_006870.png', './data/SegNet/CamVid/train/0001TP_006900.png', './data/SegNet/CamVid/train/0001TP_006930.png', './data/SegNet/CamVid/train/0001TP_006960.png'] ['./data/SegNet/CamVid/trainannot/0001TP_006690.png', './data/SegNet/CamVid/trainannot/0001TP_006720.png', './data/SegNet/CamVid/trainannot/0001TP_006750.png', './data/SegNet/CamVid/trainannot/0001TP_006780.png', './data/SegNet/CamVid/trainannot/0001TP_006810.png', './data/SegNet/CamVid/trainannot/0001TP_006840.png', './data/SegNet/CamVid/trainannot/0001TP_006870.png', './data/SegNet/CamVid/trainannot/0001TP_006900.png', './data/SegNet/CamVid/trainannot/0001TP_006930.png', './data/SegNet/CamVid/trainannot/0001TP_006960.png']
im = Image.open(data[0])
lab = Image.open(label[0])
plt.subplot(1,2,1), plt.imshow(im)
plt.subplot(1,2,2), plt.imshow(lab)
lab = np.array(lab)
print(lab.shape)
lab = torch.from_numpy(lab)
print(lab.shape)
im = tfs.ToTensor()(im)
print(im.shape)
(360, 480)
torch.Size([360, 480])
torch.Size([3, 360, 480])

在这里插入图片描述

size = 224
def crop(data, label, height=size, width=size):
    st_x = 50
    st_y = 50
    box = (st_x, st_y, st_x+width, st_y+height)
    data = data.crop(box)
    label = label.crop(box)
    return data, label

im = Image.open(data[0])
lab = Image.open(label
为了在Windows上安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows上安装了ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.youkuaiyun.com/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows下安装使用ADB,简单易懂教程](https://blog.youkuaiyun.com/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值