(转)深入详细理解矩阵 (矩阵的加减乘、转置、共轭、共轭转置)

矩阵:英文名Matrix。在数学名词中,矩阵用来表示统计数据等方面的各种有关联的数据。这个定义很好地解释了Matrix代码制造世界的数学逻辑基础。矩阵是数学中最重要的基本概念之一,是代数学的一个主要研究对象,也是数学研究及应用的一个重要工具。
矩阵加法:(只有同型矩阵之间才可以进行加法)
在这里插入图片描述
矩阵的加法满足下列运算律(A,B,C都是同型矩阵):
在这里插入图片描述
在这里插入图片描述
矩阵减法:(只有同型矩阵之间才可以进行减法)
在这里插入图片描述
矩阵乘法:
矩阵的加减法和矩阵的数乘合称矩阵的线性运算。
C = AB
将A, B, C分成相等大小的方块矩阵:
在这里插入图片描述
在这里插入图片描述
示例:
在这里插入图片描述
矩阵的转置:
把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵,这一过程称为矩阵的转置。
在这里插入图片描述
矩阵的转置满足以下运算律:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
矩阵的共轭:
矩阵的共轭定义为: 在这里插入图片描述
一个2×2复数矩阵的共轭如下所示 [12] :
在这里插入图片描述

在这里插入图片描述
矩阵的共轭转置:
  矩阵的共轭转置定义为: 在这里插入图片描述
也可以写为: 在这里插入图片描述
一个2×2复数矩阵的共轭如下所示:
在这里插入图片描述

在这里插入图片描述


本文来自 Aurora of Lewis 的优快云 博客 ,全文地址请点击:https://blog.youkuaiyun.com/know9163/article/details/80551764?utm_source=copy

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值