7、公钥密码学与模块化指数技术解析

公钥密码学与模块化指数技术解析

1. 无线传感器网络中的公钥密码学(PKC)

在无线传感器网络(WSN)这类存在硬件限制的小型设备和网络中,信息安全大多采用秘密密钥密码学。这是因为秘密密钥密码学的算法计算复杂度较低,适合硬件资源有限的设备。而且,在传感器设备安装前嵌入会话密钥是较为理想的做法。不过,更新会话密钥存在一定开销,因为需要合适的通信和足够的内存空间,同时还需一个合适的协议来同步网络中所有节点的会话密钥。但在同步过程中,秘密密钥密码学无法确保会话密钥的保密性,这是一个不容忽视的缺点。

而公钥密码学(PKC)通常被认为速度相对较慢,执行时需要较多的电力,因此架构开销较高。不过,借助硬件/软件协同设计技术,基于PKC的技术可应用于许多WSN。设计者的目标应是构建轻量级硬件架构,高效利用有限资源来实现PKC。

2. 对PKC可能的攻击

密码学有两个方面,即密码编码学和密码分析学。密码编码学的任务是构建强大的PKC,而密码分析学则是对密文、加密算法或整个密码系统进行分析,旨在破解已建立的密码系统或找出其中的薄弱环节。密码分析者的目标不仅包括PKC,还涉及秘密哈希、数字签名标准(DSS)等其他密码学方法。

密码分析的反作用对密码编码者来说是积极的,他们可以利用密码分析者发现的缺陷来改进自己的密码系统,设计出更强大的密码系统。密码分析者在破解密码技术时可能会取得以下两种成果:
- 完全破解加密代码,在不了解私钥的情况下获取原始消息。
- 缩小可能的密钥集规模,使尝试法所需的密钥集变小。

第一种成果会完全破坏密码编码者的设计,而第二种则会削弱设计。大多数情况下,密码分析者会取得第二种成果,从而帮助密码编

AI 代码审查Review工具 是一个旨在自动化代码审查流程的工具。它通过集成版本控制系统(如 GitHub 和 GitLab)的 Webhook,利用大型语言模型(LLM)对代码变更进行分析,并将审查意见反馈到相应的 Pull Request 或 Merge Request 中。此外,它还支持将审查结果通知到企业微信等通讯工具。 一个基于 LLM 的自动化代码审查助手。通过 GitHub/GitLab Webhook 监听 PR/MR 变更,调用 AI 分析代码,并将审查意见自动评论到 PR/MR,同时支持多种通知渠道。 主要功能 多平台支持: 集成 GitHub 和 GitLab Webhook,监听 Pull Request / Merge Request 事件。 智能审查模式: 详细审查 (/github_webhook, /gitlab_webhook): AI 对每个变更文件进行分析,旨在找出具体问题。审查意见会以结构化的形式(例如,定位到特定代码行、问题分类、严重程度、分析和建议)逐条评论到 PR/MR。AI 模型会输出 JSON 格式的分析结果,系统再将其转换为多条独立的评论。 通用审查 (/github_webhook_general, /gitlab_webhook_general): AI 对每个变更文件进行整体性分析,并为每个文件生成一个 Markdown 格式的总结性评论。 自动化流程: 自动将 AI 审查意见(详细模式下为多条,通用模式下为每个文件一条)发布到 PR/MR。 在所有文件审查完毕后,自动在 PR/MR 中发布一条总结性评论。 即便 AI 未发现任何值得报告的问题,也会发布相应的友好提示和总结评论。 异步处理审查任务,快速响应 Webhook。 通过 Redis 防止对同一 Commit 的重复审查。 灵活配置: 通过环境变量设置基
【直流微电网】径向直流微电网的状态空间建模线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模线性化方法,重点提出了一种基于耦合DC-DC变换器的状态空间平均模型的建模策略。该方法通过数学建模手段对直流微电网系统进行精确的状态空间描述,并对其进行线性化处理,以便于系统稳定性分析控制器设计。文中结合Matlab代码实现,展示了建模仿真过程,有助于研究人员理解和复现相关技术,推动直流微电网系统的动态性能研究工程应用。; 适合人群:具备电力电子、电力系统或自动化等相关背景,熟悉Matlab/Simulink仿真工具,从事新能源、微电网或智能电网研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网的动态建模方法;②学习DC-DC变换器在耦合条件下的状态空间平均建模技巧;③实现系统的线性化分析并支持后续控制器设计(如电压稳定控制、功率分配等);④为科研论文撰写、项目仿真验证提供技术支持代码参考。; 阅读建议:建议读者结合Matlab代码逐步实践建模流程,重点关注状态变量选取、平均化处理和线性化推导过程,同时可扩展应用于更复杂的直流微电网拓扑结构中,提升系统分析设计能力。
内容概要:本文介绍了基于物PINN驱动的三维声波波动方程求解(Matlab代码实现)理信息神经网络(PINN)求解三维声波波动方程的Matlab代码实现方法,展示了如何利用PINN技术在无需大量标注数据的情况下,结合物理定律约束进行偏微分方程的数值求解。该方法将神经网络物理方程深度融合,适用于复杂波动问题的建模仿真,并提供了完整的Matlab实现方案,便于科研人员理解和复现。此外,文档还列举了多个相关科研方向和技术服务内容,涵盖智能优化算法、机器学习、信号处理、电力系统等多个领域,突出其在科研仿真中的广泛应用价值。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及工程技术人员,尤其适合从事计算物理、声学仿真、偏微分方程数值解等相关领域的研究人员; 使用场景及目标:①学习并掌握PINN在求解三维声波波动方程中的应用原理实现方式;②拓展至其他物理系统的建模仿真,如电磁场、热传导、流体力学等问题;③为科研项目提供可复用的代码框架和技术支持参考; 阅读建议:建议读者结合文中提供的网盘资源下载完整代码,按照目录顺序逐步学习,重点关注PINN网络结构设计、损失函数构建及物理边界条件的嵌入方法,同时可借鉴其他案例提升综合仿真能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值