|
还是畅通工程Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 37962 Accepted Submission(s): 17120
Problem Description
某省调查乡村交通状况,得到的统计表中列出了任意两村庄间的距离。省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可),并要求铺设的公路总长度为最小。请计算最小的公路总长度。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出村庄数目N ( < 100 );随后的N(N-1)/2行对应村庄间的距离,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间的距离。为简单起见,村庄从1到N编号。
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最小的公路总长度。
Sample Input
Sample Output
Source
Recommend
#include<iostream> #include<cstdio> using namespace std; #define MAX 505 #define MAXCOST 0x7fffffff int graph[MAX][MAX]; int prim(int graph[][MAX], int n) { int lowcost[MAX]; int mst[MAX]; int i, j, min, minid, sum = 0; for (i = 2; i <= n; i++) { lowcost[i] = graph[1][i]; mst[i] = 1; } mst[1] = 0; for (i = 2; i <= n; i++) { min = MAXCOST; minid = 0; for (j = 2; j <= n; j++) { if (lowcost[j] < min && lowcost[j] != 0) { min = lowcost[j]; minid = j; } } //cout << "V" << mst[minid] << "-V" << minid << "=" << min << endl; sum += min; lowcost[minid] = 0; for (j = 2; j <= n; j++) { if (graph[minid][j] < lowcost[j]) { lowcost[j] = graph[minid][j]; mst[j] = minid; } } } return sum; } int main() { int i, j, k, m, n; int x, y, cost; while(scanf("%d",&m),m) { //cin >> m >> n;//m=顶点的个数,n=边的个数 n=(m*(m-1))/2; for (i = 1; i <= m; i++) { for (j = 1; j <= m; j++) { graph[i][j] = MAXCOST; } } for (k = 1; k <= n; k++) { cin >> i >> j >> cost; graph[i][j] = cost; graph[j][i] = cost; } cost = prim(graph, m); cout <<cost<< endl; } return 0; } |