1. 映射的维护方法
1.1 查询所有索引的映射:
GET: http://localhost:9200/_mapping
1.2 创建映射
post 请求:http://localhost:9200/xc_course/doc/_mapping
1.3 更新映射*
映射创建成功可以添加新字段,已有字段不允许更新。
1.4 删除映射
通过删除索引来删除映射。
2. 常用映射类型
下图是ES6.2核心的字段类型如下:
2.1 text文本字段
字符串包括text和keyword两种类型:
1、text
1)analyzer
通过analyzer属性指定分词器。
下边指定name的字段类型为text,使用ik分词器的ik_max_word分词模式。
"name": {
"type": "text",
"analyzer":"ik_max_word"
}
上边指定了analyzer是指在索引和搜索都使用ik_max_word,如果单独想定义搜索时使用的分词器则可以通过search_analyzer属性。
对于ik分词器建议是索引时使用ik_max_word将搜索内容进行细粒度分词,搜索时使用ik_smart提高搜索精确性。
"name": {
"type": "text",
"analyzer":"ik_max_word",
"search_analyzer":"ik_smart"
}
2)index
通过index属性指定是否索引。
默认为index=true,即要进行索引,只有进行索引才可以从索引库搜索到。 但是也有一些内容不需要索引,比如:商品图片地址只被用来展示图片,不进行搜索图片,此时可以将index设置为false。
删除索引,重新创建映射,将pic的index设置为false,尝试根据pic去搜索,结果搜索不到数据。
"pic": {
"type": "text",
"index":false
}
pic图片地址不进行分词搜索,只用于存储。
3)store
是否在source之外存储,每个文档索引后会在 ES中保存一份原始文档,存放在"_source"中,一般情况下不需要设置store为true,因为在_source中已经有一份原始文档了。
2.2 keyword关键字字段
上边介绍的text文本字段在映射时要设置分词器,keyword字段为关键字字段,通常搜索keyword是按照整体搜索,所以创建keyword字段的索引时是不进行分词的,比如:邮政编码、手机号码、身份证等。keyword字段通常用于过虑、排序、聚合等。
2.3 date日期类型
日期类型不用设置分词器。
通常日期类型的字段用于排序。
1)format
通过format设置日期格式
例子:
{
"properties": {
"timestamp": {
"type": "date",
"format": "yyyy‐MM‐dd HH:mm:ss||yyyy‐MM‐dd"
}
}
}
2.4 数值类型
下边是ES支持的数值类型
1、尽量选择范围小的类型,提高搜索效率。
2、对于浮点数尽量用比例因子,比如一个价格字段,单位为元,我们将比例因子设置为100这在ES中会按 分 存储,映射如下:
"price": {
"type": "scaled_float",
"scaling_factor": 100
}
由于比例因子为100,如果我们输入的价格是23.45则ES中会将23.45乘以100存储在ES中。
如果输入的价格是23.456,ES会将23.456乘以100再取一个接近原始值的数,得出2346。
使用比例因子的好处是整型比浮点型更易压缩,节省磁盘空间。
如果比例因子不适合,则从下表选择范围小的去用:
2.5 综合例子
创建如下映射
post:http://localhost:9200/xc_course/doc/_mapping
{
"properties": {
"description": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_smart"
},
"name": {
"type": "text",
"analyzer": "ik_max_word",
"search_analyzer": "ik_smart"
},
"pic":{
"type":"text",
"index":false
},
"price": {
"type": "float"
},
"studymodel": {
"type": "keyword"
},
"timestamp": {
"type": "date",
"format": "yyyy‐MM‐dd HH:mm:ss||yyyy‐MM‐dd||epoch_millis"
}
}
}