思维题
确定上下界,1边最少l个,最多r个,根据树的构造过程,必定可以用1边替换0边从而可到达1边l到r的个数
参考:http://blog.youkuaiyun.com/kk303/article/details/16368165
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <ctime>
#include <cstdlib>
#include <cstring>
#include <queue>
#include <string>
#include <set>
#include <stack>
#include <map>
#include <cmath>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
#define FF(i, a, b) for(int i = (a); i < (b); ++i)
#define FE(i, a, b) for(int i = (a); i <= (b); ++i)
#define FD(i, b, a) for(int i = (b); i >= (a); --i)
#define REP(i, N) for(int i = 0; i < (N); ++i)
#define CLR(a, v) memset(a, v, sizeof(a))
#define PB push_back
#define MP make_pair
typedef long long LL;
const int INF = 0x3f3f3f3f;
const int MAXN = 100010;
int n, m;
struct Edge{
int from, to, l;
Edge(){}
Edge(int from, int to, int l) : from(from), to(to), l(l) {}
bool operator<(const Edge& rhs) const
{
return l < rhs.l;///升序
}
}E[MAXN];
int fa[MAXN];
void init_fa(int n)
{
for (int i = 0; i <= n; i++) fa[i] = i;
}
int findset(int x){ return x == fa[x] ? x : fa[x] = findset(fa[x]); }
int solve(int op)
{
int l, addi;
if (op) l = m - 1, addi = -1;
else l = 0, addi = 1;
init_fa(n);
int ans = 0;
int cnt = 0;
for (int i = l; i <= m - 1 && i >= 0; i += addi)
{
int x = E[i].from, y = E[i].to, l = E[i].l;
int fax = findset(x), fay = findset(y);
if (fax != fay)
{
fa[fax] = fay;
ans += E[i].l;
cnt++;
if (cnt >= n - 1) break;
}
}
if (cnt < n - 1) return -1;
else return ans;
}
int fb[MAXN];
int fb_cnt;
void pre()
{
fb[0] = 1, fb[1] = 2;
int i;
for (i = 2; ;i++)
{
fb[i] = fb[i - 1] + fb[i - 2];
if (fb[i] >= 100000) break;
}
fb_cnt = i;
}
int main ()
{
int nc = 1;
int T;
pre();
scanf("%d", &T);
while (T--)
{
scanf("%d%d",&n, &m);
REP(i, m)
{
scanf("%d%d%d", &E[i].from, &E[i].to, &E[i].l);
}
printf("Case #%d: ", nc++);
sort(E, E + m);
int lm , rm;
lm = solve(0);
if (lm < 0)
{
printf("No\n");
continue;
}
rm = solve(1);
int fla = 0;
for (int i = 0; i <= fb_cnt; i++)
{
if (fb[i] <= rm && fb[i] >= lm)
{
fla = 1;
break;
}
}
if (fla) printf("Yes\n");
else printf("No\n");
}
return 0;
}