P1829 [国家集训队]Crash的数字表格

博客详细介绍了如何使用莫比乌斯反演和数论分块技巧解决涉及最大公约数和最小公倍数的复杂求和问题。通过转化、分块和预处理,将复杂表达式简化并高效计算,最终达到线性时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Label

经典莫比乌斯反演转化gcd(i,j)gcd(i,j)gcd(i,j)(P3768弱化版)

Description

给定两个正整数n,m(n,m≤107)n,m(n,m\leq 10^7)n,m(n,m107),求

∑i=1n∑j=1mlcm(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)i=1nj=1mlcm(i,j)

Solution

∵\because ∑i=1n∑j=1mlcm(i,j)=∑i=1n∑j=1mij(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{(i,j)}i=1nj=1mlcm(i,j)=i=1nj=1m(i,j)ij

若此处再利用φ∗1=id\varphi*1=idφ1=id反演,φ\varphiφ的求和式在分母上,不好提取。故考虑传统方法,即外层枚举gcd(i,j)gcd(i,j)gcd(i,j)

∑i=1n∑j=1mij(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{(i,j)}i=1nj=1m(i,j)ij

=∑d=1min(n,m)1d∑i=1n∑j=1mij[(i,j)=d]=\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{n}\sum_{j=1}^{m}ij[(i,j)=d]=d=1min(n,m)d1i=1nj=1mij[(i,j)=d]

=∑d=1min(n,m)1d∑i=1n∑j=1mij[gcd(id,jd)=1]=\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{n}\sum_{j=1}^{m}ij[gcd(\frac{i}{d},\frac{j}{d})=1]=d=1min(n,m)d1i=1nj=1mij[gcd(di,dj)=1]

=∑d=1min(n,m)1d∑i=1⌊nd⌋∑j=1⌊md⌋didj[gcd(i,j)=1]=\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}didj[gcd(i,j)=1]=d=1min(n,m)d1i=1dnj=1dmdidj[gcd(i,j)=1]

=∑d=1min(n,m)d∑i=1⌊nd⌋∑j=1⌊md⌋ij∑p∣(i,j)μ(p)=\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}ij\sum_{p|(i,j)}\mu(p)=d=1min(n,m)di=1dnj=1dmijp(i,j)μ(p)

=∑d=1min(n,m)d∑p=1min(⌊nd⌋,⌊md⌋)μ(p)∑i=1⌊nd⌋∑j=1⌊md⌋[p∣i∧p∣j]ij=\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|i\wedge p|j]ij=d=1min(n,m)dp=1min(dn,dm)μ(p)i=1dnj=1dm[pipj]ij

=∑d=1min(n,m)d∑p=1min(⌊nd⌋,⌊md⌋)μ(p)∑i=1⌊nd⌋∑j=1⌊md⌋[p∣i∧p∣j]ij=\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|i\wedge p|j]ij=d=1min(n,m)dp=1min(dn,dm)μ(p)i=1dnj=1dm[pipj]ij

=∑d=1min(n,m)d∑p=1min(⌊nd⌋,⌊md⌋)μ(p)∑i=1⌊nd⌋[p∣i]i∑j=1⌊md⌋[p∣j]j=\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}[p|i]i\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|j]j=d=1min(n,m)dp=1min(dn,dm)μ(p)i=1dn[pi]ij=1dm[pj]j

=∑d=1min(n,m)d∑p=1min(⌊nd⌋,⌊md⌋)p2μ(p)∑i=1⌊npd⌋i∑j=1⌊mpd⌋j=\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}p^2\mu(p)\sum_{i=1}^{\lfloor\frac{n}{pd}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{pd}\rfloor}j=d=1min(n,m)dp=1min(dn,dm)p2μ(p)i=1pdnij=1pdmj

式子化简到这里为止,考虑如何对上式进行分块处理。

这个式子看起来很麻烦,但并不代表不能处理(事实上,如果化简出了正确且可处理的式子而看不出来此式可处理,这才是最GG的)。

我们可以分块改写:

S(⌊nd⌋,⌊md⌋)=S(N,M)=∑p=1min(N,M)p2μ(p)∑i=1⌊Np⌋i∑j=1⌊Mp⌋jS(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)=S(N,M)=\sum_{p=1}^{min(N,M)}p^2\mu(p)\sum_{i=1}^{\lfloor\frac{N}{p}\rfloor}i\sum_{j=1}^{\lfloor\frac{M}{p}\rfloor}jS(dn,dm)=S(N,M)=p=1min(N,M)p2μ(p)i=1pNij=1pMj,则原式为

∑i=1min(n,m)dS(⌊nd⌋,⌊md⌋)\sum_{i=1}^{min(n,m)}dS(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)i=1min(n,m)dS(dn,dm)

此式显然可以数论分块求,而每求一次SSS函数的值,在O(n)O(n)O(n)线性筛(注意此题数据范围,此处不必用杜教筛)预处理出p2μ(p)p^2\mu(p)p2μ(p)的前缀和的前提下,又可以数论分块求解。

算法时间复杂度Θ(n+m)\Theta(n+m)Θ(n+m)

Code

#include<cstdio>
#include<iostream>
#define ri register int
#define ll long long
using namespace std;

const int MAXN=1e7;
const ll MOD=20101009;
int cnt,prime[MAXN+20];
ll N,M,mu[MAXN+20],sum[MAXN+20],Ans;
bool notprime[MAXN+20];

void Mobius()
{
	mu[1]=1,notprime[1]=true;
	for(ri i=2;i<=MAXN;++i)
	{
		if(!notprime[i]) prime[++cnt]=i,mu[i]=-1;
		for(ri j=1;j<=cnt&&i*prime[j]<=MAXN;++j)
		{
			notprime[i*prime[j]]=true;
			if(i%prime[j]==0) break;
			else mu[i*prime[j]]=-mu[i];
		}
	}
	for(ri i=1;i<=MAXN;++i) 
		sum[i]=(sum[i-1]+(((ll)i*(ll)i)%MOD)*mu[i]%MOD+MOD)%MOD;
}

inline ll sum1(ll n)
{
	return (n*(n+1)/2)%MOD;
}

ll S_mu(ll n,ll m)
{
	ll ans=0LL;
	for(ll l=1,r;l<=n;l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		ans=(ans+(((sum[r]-sum[l-1])%MOD+MOD)%MOD)*(sum1(n/l)*sum1(m/l)%MOD)%MOD)%MOD;
	}
	return ans;
}

int main()
{
	std::ios::sync_with_stdio(false);
	Mobius();
	cin>>N>>M;
	if(N>M) swap(N,M);
	for(ri l=1,r;l<=N;l=r+1)
	{
		r=min(N/(N/l),M/(M/l));
		Ans=(Ans+(S_mu(N/l,M/l)*((sum1(r)-sum1(l-1)+MOD)%MOD))%MOD)%MOD;
	}
	cout<<Ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值