Label
经典莫比乌斯反演转化gcd(i,j)gcd(i,j)gcd(i,j)(P3768弱化版)
Description
给定两个正整数n,m(n,m≤107)n,m(n,m\leq 10^7)n,m(n,m≤107),求
∑i=1n∑j=1mlcm(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)i=1∑nj=1∑mlcm(i,j)
Solution
∵\because∵ ∑i=1n∑j=1mlcm(i,j)=∑i=1n∑j=1mij(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{(i,j)}i=1∑nj=1∑mlcm(i,j)=i=1∑nj=1∑m(i,j)ij
若此处再利用φ∗1=id\varphi*1=idφ∗1=id反演,φ\varphiφ的求和式在分母上,不好提取。故考虑传统方法,即外层枚举gcd(i,j)gcd(i,j)gcd(i,j):
即 ∑i=1n∑j=1mij(i,j)\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{ij}{(i,j)}i=1∑nj=1∑m(i,j)ij
=∑d=1min(n,m)1d∑i=1n∑j=1mij[(i,j)=d]=\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{n}\sum_{j=1}^{m}ij[(i,j)=d]=d=1∑min(n,m)d1i=1∑nj=1∑mij[(i,j)=d]
=∑d=1min(n,m)1d∑i=1n∑j=1mij[gcd(id,jd)=1]=\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{n}\sum_{j=1}^{m}ij[gcd(\frac{i}{d},\frac{j}{d})=1]=d=1∑min(n,m)d1i=1∑nj=1∑mij[gcd(di,dj)=1]
=∑d=1min(n,m)1d∑i=1⌊nd⌋∑j=1⌊md⌋didj[gcd(i,j)=1]=\sum_{d=1}^{min(n,m)}\frac{1}{d}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}didj[gcd(i,j)=1]=d=1∑min(n,m)d1i=1∑⌊dn⌋j=1∑⌊dm⌋didj[gcd(i,j)=1]
=∑d=1min(n,m)d∑i=1⌊nd⌋∑j=1⌊md⌋ij∑p∣(i,j)μ(p)=\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}ij\sum_{p|(i,j)}\mu(p)=d=1∑min(n,m)di=1∑⌊dn⌋j=1∑⌊dm⌋ijp∣(i,j)∑μ(p)
=∑d=1min(n,m)d∑p=1min(⌊nd⌋,⌊md⌋)μ(p)∑i=1⌊nd⌋∑j=1⌊md⌋[p∣i∧p∣j]ij=\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|i\wedge p|j]ij=d=1∑min(n,m)dp=1∑min(⌊dn⌋,⌊dm⌋)μ(p)i=1∑⌊dn⌋j=1∑⌊dm⌋[p∣i∧p∣j]ij
=∑d=1min(n,m)d∑p=1min(⌊nd⌋,⌊md⌋)μ(p)∑i=1⌊nd⌋∑j=1⌊md⌋[p∣i∧p∣j]ij=\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|i\wedge p|j]ij=d=1∑min(n,m)dp=1∑min(⌊dn⌋,⌊dm⌋)μ(p)i=1∑⌊dn⌋j=1∑⌊dm⌋[p∣i∧p∣j]ij
=∑d=1min(n,m)d∑p=1min(⌊nd⌋,⌊md⌋)μ(p)∑i=1⌊nd⌋[p∣i]i∑j=1⌊md⌋[p∣j]j=\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}\mu(p)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}[p|i]i\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}[p|j]j=d=1∑min(n,m)dp=1∑min(⌊dn⌋,⌊dm⌋)μ(p)i=1∑⌊dn⌋[p∣i]ij=1∑⌊dm⌋[p∣j]j
=∑d=1min(n,m)d∑p=1min(⌊nd⌋,⌊md⌋)p2μ(p)∑i=1⌊npd⌋i∑j=1⌊mpd⌋j=\sum_{d=1}^{min(n,m)}d\sum_{p=1}^{min(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)}p^2\mu(p)\sum_{i=1}^{\lfloor\frac{n}{pd}\rfloor}i\sum_{j=1}^{\lfloor\frac{m}{pd}\rfloor}j=d=1∑min(n,m)dp=1∑min(⌊dn⌋,⌊dm⌋)p2μ(p)i=1∑⌊pdn⌋ij=1∑⌊pdm⌋j
式子化简到这里为止,考虑如何对上式进行分块处理。
这个式子看起来很麻烦,但并不代表不能处理(事实上,如果化简出了正确且可处理的式子而看不出来此式可处理,这才是最GG的)。
我们可以分块改写:
设S(⌊nd⌋,⌊md⌋)=S(N,M)=∑p=1min(N,M)p2μ(p)∑i=1⌊Np⌋i∑j=1⌊Mp⌋jS(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)=S(N,M)=\sum_{p=1}^{min(N,M)}p^2\mu(p)\sum_{i=1}^{\lfloor\frac{N}{p}\rfloor}i\sum_{j=1}^{\lfloor\frac{M}{p}\rfloor}jS(⌊dn⌋,⌊dm⌋)=S(N,M)=∑p=1min(N,M)p2μ(p)∑i=1⌊pN⌋i∑j=1⌊pM⌋j,则原式为
∑i=1min(n,m)dS(⌊nd⌋,⌊md⌋)\sum_{i=1}^{min(n,m)}dS(\lfloor\frac{n}{d}\rfloor,\lfloor\frac{m}{d}\rfloor)i=1∑min(n,m)dS(⌊dn⌋,⌊dm⌋)
此式显然可以数论分块求,而每求一次SSS函数的值,在O(n)O(n)O(n)线性筛(注意此题数据范围,此处不必用杜教筛)预处理出p2μ(p)p^2\mu(p)p2μ(p)的前缀和的前提下,又可以数论分块求解。
算法时间复杂度Θ(n+m)\Theta(n+m)Θ(n+m)。
Code
#include<cstdio>
#include<iostream>
#define ri register int
#define ll long long
using namespace std;
const int MAXN=1e7;
const ll MOD=20101009;
int cnt,prime[MAXN+20];
ll N,M,mu[MAXN+20],sum[MAXN+20],Ans;
bool notprime[MAXN+20];
void Mobius()
{
mu[1]=1,notprime[1]=true;
for(ri i=2;i<=MAXN;++i)
{
if(!notprime[i]) prime[++cnt]=i,mu[i]=-1;
for(ri j=1;j<=cnt&&i*prime[j]<=MAXN;++j)
{
notprime[i*prime[j]]=true;
if(i%prime[j]==0) break;
else mu[i*prime[j]]=-mu[i];
}
}
for(ri i=1;i<=MAXN;++i)
sum[i]=(sum[i-1]+(((ll)i*(ll)i)%MOD)*mu[i]%MOD+MOD)%MOD;
}
inline ll sum1(ll n)
{
return (n*(n+1)/2)%MOD;
}
ll S_mu(ll n,ll m)
{
ll ans=0LL;
for(ll l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
ans=(ans+(((sum[r]-sum[l-1])%MOD+MOD)%MOD)*(sum1(n/l)*sum1(m/l)%MOD)%MOD)%MOD;
}
return ans;
}
int main()
{
std::ios::sync_with_stdio(false);
Mobius();
cin>>N>>M;
if(N>M) swap(N,M);
for(ri l=1,r;l<=N;l=r+1)
{
r=min(N/(N/l),M/(M/l));
Ans=(Ans+(S_mu(N/l,M/l)*((sum1(r)-sum1(l-1)+MOD)%MOD))%MOD)%MOD;
}
cout<<Ans;
return 0;
}