牛客第一场 Different Integers

本文介绍了一道ACM竞赛中的区间查询问题,并提供了一种利用树状数组进行离线处理的有效解决方案。通过在原序列后添加自身,将两个查询区间转化为一个区间,简化了问题复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://www.nowcoder.com/acm/contest/139/J
来源:牛客网
 

时间限制:C/C++ 2秒,其他语言4秒
空间限制:C/C++ 524288K,其他语言1048576K
64bit IO Format: %lld

题目描述

Given a sequence of integers a1, a2, ..., an and q pairs of integers (l1, r1), (l2, r2), ..., (lq, rq), find count(l1, r1), count(l2, r2), ..., count(lq, rq) where count(i, j) is the number of different integers among a1, a2, ..., ai, aj, aj + 1, ..., an.

输入描述:

The input consists of several test cases and is terminated by end-of-file.
The first line of each test cases contains two integers n and q.
The second line contains n integers a1, a2, ..., an.
The i-th of the following q lines contains two integers li and ri.

输出描述:

For each test case, print q integers which denote the result.

 

示例1

输入

复制

3 2
1 2 1
1 2
1 3
4 1
1 2 3 4
1 3

输出

复制

2
1
3

备注:

* 1 ≤ n, q ≤ 105
* 1 ≤ ai ≤ n
* 1 ≤ li, ri ≤ n
* The number of test cases does not exceed 10.

题意:给你一个长度为n的序列和q次询问,问1-l和r-n有多少种不同的数;

思路:在序列后添加原序列,将两个区间转化成一个区间,然后树状数组离线处理(或者线段树or主席树?);

下面附上我的代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5 + 10;
struct node
{
    int l, r;
    int id;
}q[100005];
int last[maxn];
int c[maxn];
int a[maxn];
int lowbit(int x)
{
    return x & (-x);    
}
void add(int x, int v, int n)
{
    for(int i = x; i <= n * 2; i += lowbit(i))
        c[i] += v;
}
int sum(int l)
{
    int ret = 0;
    for(int i = l; i > 0  ;i -= lowbit(i))
    {
        ret += c[i]; 
    }
    return ret;
}
bool cmp(node a, node b)
{
    return a.r < b.r;
}
int ans[100005];
int main()
{
    int n, m;
    while(cin >> n >> m)
    {
    	memset(a, 0, sizeof(a));
        memset(last, -1, sizeof(last));
        memset(c, 0, sizeof(c));
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &a[i]);
            a[i + n] = a[i];
        }
        for(int i = 0; i < m; i++)
        {
            scanf("%d %d", &q[i].l, &q[i].r);
            int t = q[i].l;
            q[i].l = q[i].r;
            q[i].r = t + n;
            q[i].id = i;
        }
        sort(q, q + m, cmp);
        for(int i = 0, j = 1; i < m; i++)
        {
            for(; j <= q[i].r; j++)
            {
                if(~last[a[j]])
                    add(last[a[j]], -1, n);
                add(j, 1, n);
                last[a[j]] = j;
            }
//            for(int k = 1; k <= 2 * n; k++)
//            	printf("%d ", c[k]);
//            puts("");
            ans[q[i].id] = sum(q[i].r) - sum(q[i].l-1);
        }
        for(int i = 0; i < m; i++)
            printf("%d\n", ans[i]);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值