Given a sequence a
1
1,a
2
2,a
3
3......a
n
n, your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Case 1: 14 1 4 Case 2: 7 1 6
题意:输出子序列的最大值;
思路:从第一个数开始计算子序列的值,若小于0,则从当前值为起点开始继续相加,实际就是为动态规划;
初值为dp[0]=a[0],状态转移方程为dp[i]=dp[i-1]<0?dp[i-1]:dp[i-1]+a[i];
下面附上代码:
#include<bits/stdc++.h>
using namespace std;
int a[100005],dp[100005];
int main()
{
int t,n;
cin>>t;
int k=0;
while(t--)
{
cin>>n;
int max;
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
dp[1]=a[1];
for(int i=2;i<=n;i++)
{
if(dp[i-1]<0) dp[i]=a[i];
else dp[i]=dp[i-1]+a[i];
}
max=dp[1];
int p=1;
for(int i=1;i<=n;i++)
{
if(max<dp[i])
{
max=dp[i];
p=i;
}
}
int h=p;
int sum=0;
for(int i=p;i>=1;i--)
{
sum+=a[i];
if(sum==max)
h=i;
}
printf("Case %d:\n",++k);
printf("%d %d %d\n",max,h,p);
if(t) printf("\n");
}
return 0;
}