树的直径
给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和。树中最远的两个节点之间的距离被称为树的直径,连接这两点的路径被称为树的最长链。后者通常也可称为直径,即直径是一个
数值概念,也可代指一条路径 树的直径通常有两种求法,时间复杂度均为O(n)。我们假设树以N个点N-1条边的无向图形式给出,并存储在邻接表中。
树形DP求树的直径
设1号节点为根,“N个点N-1条边的无向图"就可以看做“有根树”
设d[x]表示从节点x出发走向以x为根的子树,能够到达的最远节点的距离。设x的子节点为y1,y2, y3, …, yt,edge(x, y)表示边权,显然有”
d[x] = max{d[yi] + edge(x, yi)}(1 <= i <= t)
接下来,我们可以考虑对每个节点x求出"经过节点x的最长链的长度"f[x],整棵树的直径就是max{f[x]}(1 <= x <= n)
对于x的任意两个节点yi和yj,"经过节点x的最长链长度"可以通过四个部分构成:从yi到yi子树中的最远距离,边(x, yi),边(x, yj),从yj到yj子树中的最远距离。设j < i,因此:
f[x] = max{d[yi] + d[yj] + edge(x, yi) + edge(x, yj)}(1 <= j < i <= t)
但是我们没有必要使用两层循环来枚举i, j。在计算d[x]的霍城,子节点的循环将要枚举到i时d[x]恰好就保存了从节点x出发走向“以yj(j < i)为根的子树”,能够到达的最远节点的距离,这个距离就是max{d[yi] +edge(x, yi)}(1 <= j < i)。所以我们先用d[x] + d[yi] + edge(x, yi)更新f[x],再用d[yi] + edge(x, yi)更新d[x]即可
void dp(int x) {
v[x] = 1;
for(int i = head[x]; i; i = net[i]) {
int y = ver[i];
if(v[y]) continue;
dp(y);
ans = max(ans, d[x] + d[y] + edge[i]);
d[x] = max(d[x], d[y] + edge[i]);
}
}
两次BFS(DFS)求树的直径
通过两次BFS或者两次DFS也可以求树的直径,并且更容易计算出直径上的具体节点
详细地说,这个做法包含两步:
1.从任意节点出发,通过BFS和DFS对树进行一次遍历,求出与出发点距离最远的节点记为p
2.从节点p出发,通过BFS或DFS再进行一次遍历,求出与p距离最远的节点,记为q。
从p到q的路径就是树的一条直径。因为p一定是直径的一端,否则总能找到一条更长的链,与直径的定义矛盾。显然地脑洞一下即可。p为直径的一端,那么自然的,与p最远的q就是直径的另一端。
在第2步的遍历中,可以记录下来每个点第一次被访问的前驱节点。最后从q递归到p,即可得到直径的具体方案
DFS求树的直径
#include<bits/stdc++.h>
using namespace std;
const int maxn = 100086;
struct picture {
int y, v, net;
int pre;
}e[maxn];
int lin[maxn], len = 0;
int n, m, dis[maxn];
bool vis[maxn];
int start, end;
inline int read() {
int x = 0, y = 1;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') y = -1;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << 1) + (x << 3) + ch - '0';
ch = getchar();
}
return x * y;
}
inline void insert(int xx, int yy, int vv) {
e[++len].y = yy;
e[len].v = vv;
e[len].net = lin[xx];
e[len].pre = xx;
lin[xx] = len;
}
void dfs(int st) {
vis[st] = 1;
for(int i = lin[st]; i; i = e[i].net) {
int to = e[i].y;
if(!vis[to]) {
dis[to] = dis[st] + e[i].v;
dfs(to);
}
}
}
int main() {
memset(vis, 0, sizeof(vis));
memset(dis, 0x3f3f3f, sizeof(dis));
n = read(), m = read();
for(int i = 1; i <= m; ++i) {
int x, y, v;
x = read(), y = read(), v = read();
insert(x, y, v);
insert(y, x, v);
}
dis[1] = 0;
dfs(1);
int maxx = -1000;
for(int i = 1; i <= n; ++i)
if(dis[i] > maxx && dis[i] != 1061109567) {
maxx = dis[i];
start = i;
}
cout << maxx << ' ' << start << '\n';
memset(vis, 0, sizeof(vis));
memset(dis, 0x3f3f3f,sizeof(dis));
dis[start] = 0;
dfs(start);
maxx = -1000;
for(int i = 1; i <= n; ++i)
if(dis[i] > maxx && dis[i] != 1061109567) {
maxx = dis[i];
end = i;
}
cout << start << ' ' << maxx << ' ' << end << '\n';
return 0;
}
DFS求树的直径
BFS求树的直径
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 100086;
const ll inf = 1061109567;
struct picture {
int y, net, v;
int pre;
}e[maxn];
int n, m;
int lin[maxn], len = 0;
int dis[maxn];
int q[maxn], head = 0, tail = 0;
int start, end;
bool vis[maxn];
inline int read() {
int x = 0, y = 1;
char ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') y = -1;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << 1) + (x << 3) + ch - '0';
ch = getchar();
}
return x * y;
}
inline void insert(int xx, int yy, int vv) {
e[++len].pre = xx;
e[len].y = yy;
e[len].v = vv;
e[len].net = lin[xx];
lin[xx] = len;
}
inline void bfs(int st) {
head = tail = 0;
vis[st] = 1;
q[++tail] = st;
while(head < tail) {
//cout << head << '\n';
for(int i = lin[q[++head]]; i; i = e[i].net) {
int to = e[i].y;
if(!vis[to]) {
dis[to] = dis[q[head]] + e[i].v;
vis[to] = 1;
q[++tail] = to;
}
}
}
}
int main() {
n = read(), m = read();
for(int i = 1; i <= m; ++i) {
int x, y, v;
x = read(), y = read(), v = read();
insert(x, y, v);
insert(y, x, v);
}
memset(dis, 0x3f3f3f, sizeof(dis));
memset(vis, 0, sizeof(vis));
dis[1] = 0;
bfs(1);
int maxx = -1000;
for(int i = 1; i <= n; ++i)
if(dis[i] > maxx && dis[i] != inf) {
start = i;
maxx = dis[i];
}
cout << maxx << ' ' << start << '\n';
memset(dis, 0x3f3f3f, sizeof(dis));
memset(vis, 0, sizeof(vis));
dis[start] = 0;
bfs(start);
maxx = -1000;
for(int i = 1; i <= n; ++i)
if(dis[i] > maxx && dis[i] != inf) {
end = i;
maxx = dis[i];
}
cout << start << ' ' << maxx << ' ' << end << '\n';
return 0;
}
BFS求树的直径