sklearn机器学习:K-Means

本文介绍了sklearn库中的K-Means聚类算法,重点讲解了n_clusters参数,它是K-Means中必须指定的参数,用于设定要分成的类别数量。通常需要根据数据分布探索合适的n_clusters值。通过创建带标签的数据集并观察,可以发现当n_clusters设为4时,SSE收敛效果最佳,这与数据集的实际情况相吻合。

K-Means类的格式

sklearn.cluster.KMeans (n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm=’auto’)

重要参数:n_clusters

n_clusters是K-Means中的k,告诉模型要分几类。是K-Means当中唯一必填的参数,默认为8类,但通常聚类结果会是一个小于8的结果。通常,在开始聚类之前,并不知道n_clusters究竟是多少,因此要对它进行探索。
当拿到一个数据集,如果可能的话,希望能够通过绘图先观察一下这个数据集的数据分布,以此来为聚类时输入的n_clusters做一个参考。
首先,创建一个有标签的数据集。

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
#自己创建数据集
X, y = make_blobs(n_samples=500,n_features=2,centers=4,random_state=1)
#看一下点的分布情况
color = ["red","pink","orange","gray"]
for i in range(4):
    plt.scatter(X[y==i, 0], X[y==i, 1]
                ,marker='o' #点的形状
                ,s=8 #点的⼤大⼩小
                ,c=color[i]
                )
plt.show()

在这里插入图片描述
基于这个分布,使用K-Means聚类。首先,猜测一下,这个数据中有几簇?

from sklearn.cluster import KMeans
#先用k=3试试
n_clusters = 3
cluster = KMeans(n_clusters=n_clusters, random_state=0).fit(X)
#重要属性labels_,查看聚好的类别,每个样本所对应的类
y_pred = cluster.labels_
y_pred
array([0, 0, 2, 1, 2, 1, 2, 2, 2, 2, 0, 0, 2
本程序是在python中完成,基于sklearn.cluster中的k-means聚类包来实现数据的聚类,对于里面使用的数据格式如下:(注意更改程序中的相关参数) 138 0 124 1 127 2 129 3 119 4 127 5 124 6 120 7 123 8 147 9 188 10 212 11 229 12 240 13 240 14 241 15 240 16 242 17 174 18 130 19 132 20 119 21 48 22 37 23 49 0 42 1 34 2 26 3 20 4 21 5 23 6 13 7 19 8 18 9 36 10 25 11 20 12 19 13 19 14 5 15 29 16 22 17 13 18 46 19 15 20 8 21 33 22 41 23 69 0 56 1 49 2 40 3 52 4 62 5 54 6 32 7 38 8 44 9 55 10 70 11 74 12 105 13 107 14 56 15 55 16 65 17 100 18 195 19 136 20 87 21 64 22 77 23 61 0 53 1 47 2 33 3 34 4 28 5 41 6 40 7 38 8 33 9 26 10 31 11 31 12 13 13 17 14 17 15 25 16 17 17 17 18 14 19 16 20 17 21 29 22 44 23 37 0 32 1 34 2 26 3 23 4 25 5 25 6 27 7 30 8 25 9 17 10 12 11 12 12 12 13 7 14 6 15 6 16 12 17 12 18 39 19 34 20 32 21 34 22 35 23 33 0 57 1 81 2 77 3 68 4 61 5 60 6 56 7 67 8 102 9 89 10 62 11 57 12 57 13 64 14 62 15 69 16 81 17 77 18 64 19 62 20 79 21 75 22 57 23 73 0 88 1 75 2 70 3 77 4 73 5 72 6 76 7 76 8 74 9 98 10 90 11 90 12 85 13 79 14 79 15 88 16 88 17 81 18 84 19 89 20 79 21 68 22 55 23 63 0 62 1 58 2 58 3 56 4 60 5 56 6 56 7 58 8 56 9 65 10 61 11 60 12 60 13 61 14 65 15 55 16 56 17 61 18 64 19 69 20 83 21 87 22 84 23 41 0 35 1 38 2 45 3 44 4 49 5 55 6 47 7 47 8 29 9 14 10 12 11 4 12 10 13 9 14 7 15 7 16 11 17 12 18 14 19 22 20 29 21 23 22 33 23 34 0 38 1 38 2 37 3 37 4 34 5 24 6 47 7 70 8 41 9 6 10 23 11 4 12 15 13 3 14 28 15 17 16 31 17 39 18 42 19 54 20 47 21 68 22
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值