-
任取环 R R R中的元素 x x x都满足 x 2 = x x^2=x x2=x,请证明环 R R R是交换环。
若 R R R是整环
a b = b a ab=ba ab=ba, ∀ a , b ∈ R , 若 有 a b = 0 , 则 b a = a b = 0 , \forall a,b \in R, 若有ab=0,则ba=ab=0, ∀a,b∈R,若有ab=0,则ba=ab=0,满足交换环的性质,否则 a 2 b 2 = a b = ( a b ) 2 = a b a b = a a b b , a b a b = a a b b a^2b^2=ab=(ab)^2=abab=aabb,abab=aabb a2b2=ab=(ab)2=abab=aabb,abab=aabb,根据消去律有 a b = b a ab=ba ab=ba, R R R是交换环。若 R R R不是整环,对于那些 R R R那些满足消去律的元素任然满足 a b = b a ab=ba ab=ba,对不满足消去律的元素,即 a b = 0 且 a ≠ 0 , b ≠ 0 ab=0且a\neq0,b\neq0 ab=0且a=0,b=0, ( b a ) 2 = b a (ba)^2=ba (ba)2=ba = b a b a = b ( a b ) a = 0 =baba=b(ab)a=0 =baba=b(ab)a=0,所以 a b = b a = 0 ab=ba=0 ab=ba=0。
所以环 R R R是交换环。 -
设 Z [ 2 ] = { a + b 2 : a , b ∈ Z } \Z[\sqrt2]=\{a+b\sqrt2:a,b\in\Z\} Z[2]={ a+b2:a,b∈Z},请证明 Z [ 2 ] \Z[\sqrt2] Z[2]是环,且是整环。
∀ a 1 + b 1 2 , a 2 + b 2 2 ∈ Z [ 2 ] \forall a_1+b_1\sqrt2,a_2+b_2\sqrt2 \in \Z[\sqrt2] ∀a1+b12,a2+b22∈Z[2], a 1 + b 1 2 + a 2 + b 2 2 = a 1 + a 2 + ( b 1 + b 2 ) 2 ∈ Z [ 2 ] a_1+b_1\sqrt2+a_2+b_2\sqrt2=a_1+a_2+(b_1+b_2)\sqrt2\in \Z[\sqrt2] a1+b12+a2+b22=a1+a2+(b1+b2)2∈Z[2],所以在加法上满足封闭性,显然单位元为 0 0 0,逆元为 − a