Let us define a regular brackets sequence in the following way:
1. Empty sequence is a regular sequence.
2. If S is a regular sequence, then (S) and [S] are both regular sequences.
3. If A and B are regular sequences, then AB is a regular sequence.
For example, all of the following sequences of characters are regular brackets sequences:
(), [], (()), ([]), ()[], ()[()]
And all of the following character sequences are not:
(, [, ), )(, ([)], ([]
Some sequence of characters ‘(’, ‘)’, ‘[’, and ‘]’ is given. You are to find the shortest possible
regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string
a1a2 … an is called a subsequence of the string b1b2 … bm, if there exist such indices 1 ≤ i1 < i2 <
… < in ≤ m, that aj = bij
for all 1 ≤ j ≤ n.
Input
The input begins with a single positive integer on a line by itself indicating the number of the cases
following, each of them as described below.
This line is followed by a blank line, and there is also a blank line between two consecutive inputs.
The input file contains at most 100 brackets (characters ‘(’, ‘)’, ‘[’ and ‘]’) that are situated on a
single line without any other characters among them.
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases
will be separated by a blank line.
Write to the output file a single line that contains some regular brackets sequence that has the
minimal possible length and contains the given sequence as a subsequence.
Sample Input
1
([(]
Sample Output
()[()]
本题是算法竞赛入门经典里面的题目,当时看书的时候觉得自己看明白了,但是当test时再次遇到的时候还是没做出来,说明功底还是不够,经典的动态规划。状态转移方程
当s[i],s[j]能够匹配时,f(i,j)=f(i+1,j-1)。判断之后才有f(i,j)=min{f(i,k)+f(k+1,j) | i < k < j}有一点很重要,就是不管是否满足第一种状态,都要尝试第二种状态。
还有这道题对我来说最坑的一点就是上面加粗斜体的那句话。在输入之前会输入一个空行。还有可能会输入空字符串。
#include <cstdio>
#include <iostream>
using namespace std;
#include <algorithm>
#include <cstring>
int n;
char s[105];
int d[105][105];
int match(char a,char b)
{
if((a=='('&&b==')')||(a=='['&&b==']'))
return 1;
return 0;
}
void dp()
{
for(int i=0;i<n;i++)
{
d[i+1][i]=0;
d[i][i]=1;
}
for(int i=n-2;i>=0;i--)
{
for(int j=i+1;j<n;j++)
{
d[i][j]=n;
if(match(s[i],s[j])) d[i][j]=min(d[i][j],d[i+1][j-1]);
for(int k=i;k<j;k++)
d[i][j]=min(d[i][k]+d[k+1][j],d[i][j]);
}
}
}
void print(int i,int j)
{
if(i>j) return;
if(i==j)
{
if(s[i]=='('||s[i]==')')
printf("()");
else
printf("[]");
return;
}
if(match(s[i],s[j])&&d[i][j]==d[i+1][j-1])
{
putchar(s[i]);
print(i+1,j-1);
putchar(s[j]);
return;
}
for(int k=i;k<j;k++)
{
if(d[i][j]==d[i][k]+d[k+1][j])
{
print(i,k);
print(k+1,j);
return ;
}
}
}
int main()
{
int t;
scanf("%d",&t);
getchar();
while(t--)
{
memset(d,0,sizeof(d));
fgets(s,105,stdin);
fgets(s,105,stdin);
n=strlen(s)-1;
//cout<<n<<endl;
dp();
print(0,n-1);
cout<<endl;
if(t)
cout<<endl;
}
return 0;
}