Building Machine Learning Pipelines 项目教程

Building Machine Learning Pipelines 项目教程

building-machine-learning-pipelines Code repository for the O'Reilly publication "Building Machine Learning Pipelines" by Hannes Hapke & Catherine Nelson building-machine-learning-pipelines 项目地址: https://gitcode.com/gh_mirrors/bu/building-machine-learning-pipelines

1. 项目目录结构及介绍

building-machine-learning-pipelines/
├── AUTHORS.rst
├── CHANGELOG.rst
├── CONTRIBUTING.rst
├── LICENSE
├── MANIFEST.in
├── Makefile
├── README.md
├── __init__.py
├── setup.cfg
├── github/
│   └── ISSUE_TEMPLATE/
├── chapters/
├── components/
├── interactive-pipeline/
├── pipelines/
├── pre-experiment-pipeline/
├── requirements/
└── utils/
    └── download_dataset.py

目录结构介绍

  • AUTHORS.rst: 项目作者信息。
  • CHANGELOG.rst: 项目变更日志。
  • CONTRIBUTING.rst: 贡献指南。
  • LICENSE: 项目许可证。
  • MANIFEST.in: 项目清单文件。
  • Makefile: 项目构建文件。
  • README.md: 项目介绍和使用说明。
  • init.py: Python包初始化文件。
  • setup.cfg: 项目配置文件。
  • github/ISSUE_TEMPLATE/: GitHub问题模板。
  • chapters/: 各章节的独立代码。
  • components/: 项目组件。
  • interactive-pipeline/: 交互式TFX管道。
  • pipelines/: 完整的管道代码,包括Apache Beam、Apache Airflow、Kubeflow Pipelines和GCP。
  • pre-experiment-pipeline/: 预实验管道。
  • requirements/: 项目依赖文件。
  • utils/download_dataset.py: 数据集下载脚本。

2. 项目启动文件介绍

项目的启动文件主要是utils/download_dataset.py。该脚本用于下载初始数据集,为后续的机器学习管道准备数据。

启动步骤

  1. 从项目的根目录执行以下命令:
    python3 utils/download_dataset.py
    
  2. 执行完毕后,会在项目根目录下生成一个data文件夹,其中包含consumer_complaints_with_narrative.csv文件。

3. 项目的配置文件介绍

setup.cfg

setup.cfg是项目的配置文件,用于定义项目的元数据和构建配置。以下是该文件的部分内容示例:

[metadata]
name = building-machine-learning-pipelines
version = 0.1
description = Code repository for the O'Reilly publication "Building Machine Learning Pipelines" by Hannes Hapke & Catherine Nelson
author = Hannes Hapke & Catherine Nelson
license = MIT

[options]
packages = find:
install_requires =
    tensorflow==2.6.1
    tfx==1.4.0
    apache-beam==2.33.0

配置文件介绍

  • [metadata]: 定义项目的元数据,如名称、版本、描述、作者和许可证。
  • [options]: 定义项目的安装选项,包括需要安装的包及其版本。

通过这些配置文件,可以确保项目在不同环境中的一致性和可重复性。

building-machine-learning-pipelines Code repository for the O'Reilly publication "Building Machine Learning Pipelines" by Hannes Hapke & Catherine Nelson building-machine-learning-pipelines 项目地址: https://gitcode.com/gh_mirrors/bu/building-machine-learning-pipelines

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

TensorFlow Deep Learning Projects: 10 real-world projects on computer vision, machine translation, chatbots, and reinforcement learning Leverage the power of Tensorflow to design deep learning systems for a variety of real-world scenarios Key Features Build efficient deep learning pipelines using the popular Tensorflow framework Train neural networks such as ConvNets, generative models, and LSTMs Includes projects related to Computer Vision, stock prediction, chatbots and more Book Description TensorFlow is one of the most popular frameworks used for machine learning and, more recently, deep learning. It provides a fast and efficient framework for training different kinds of deep learning models, with very high accuracy. This book is your guide to master deep learning with TensorFlow with the help of 10 real-world projects. TensorFlow Deep Learning Projects starts with setting up the right TensorFlow environment for deep learning. Learn to train different types of deep learning models using TensorFlow, including Convolutional Neural Networks, Recurrent Neural Networks, LSTMs, and Generative Adversarial Networks. While doing so, you will build end-to-end deep learning solutions to tackle different real-world problems in image processing, recommendation systems, stock prediction, and building chatbots, to name a few. You will also develop systems that perform machine translation, and use reinforcement learning techniques to play games. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow, and will be able to build and train your own deep learning models with TensorFlow confidently. What you will learn Set up the TensorFlow environment for deep learning Construct your own ConvNets for effective image processing Use LSTMs for image caption generation Forecast stock prediction accurately with an LSTM architecture Learn what semantic matching is by detecting duplic
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郑微殉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值