Graphics Gems 项目教程

Graphics Gems 项目教程

GraphicsGems Code for the "Graphics Gems" book series GraphicsGems 项目地址: https://gitcode.com/gh_mirrors/gr/GraphicsGems

1. 项目介绍

Graphics Gems 是一个开源项目,包含了 "Graphics Gems" 系列书籍的代码。这些书籍是由一群图形学领域的专家编写的,旨在为图形学开发者提供实用的算法和技巧。项目的主要目的是为图形学社区提供一个集中的资源库,方便开发者学习和使用这些算法。

项目的主要特点包括:

  • 丰富的算法库:涵盖了从基础到高级的各种图形学算法。
  • 跨平台支持:代码主要使用 C 和 C++ 编写,适用于多种平台。
  • 开源社区维护:项目托管在 GitHub 上,方便社区成员贡献和改进。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保你已经安装了以下工具:

  • Git
  • C/C++ 编译器(如 GCC 或 Clang)

2.2 克隆项目

首先,克隆项目到本地:

git clone https://github.com/erich666/GraphicsGems.git

2.3 编译项目

进入项目目录并编译代码:

cd GraphicsGems
mkdir build
cd build
cmake ..
make

2.4 运行示例

编译完成后,你可以运行项目中的示例代码:

./bin/example

3. 应用案例和最佳实践

3.1 应用案例

案例1:光线追踪

在图形学中,光线追踪是一种常用的渲染技术。Graphics Gems 项目中提供了多种光线追踪算法的实现,开发者可以直接使用这些算法来加速自己的渲染引擎开发。

案例2:几何处理

几何处理是图形学中的另一个重要领域。项目中包含了多种几何处理算法,如三角剖分、网格简化等,这些算法可以用于构建复杂的三维模型。

3.2 最佳实践

实践1:代码复用

Graphics Gems 项目中的代码是高度模块化的,开发者可以直接复用这些代码来构建自己的应用。建议在复用代码时,仔细阅读代码注释,确保理解算法的实现细节。

实践2:社区贡献

如果你发现项目中的代码有改进的空间,或者你有新的算法想要分享,可以通过提交 Pull Request 的方式贡献代码。这不仅可以帮助其他开发者,也能提升你的技术水平。

4. 典型生态项目

4.1 OpenGL

OpenGL 是一个跨平台的图形 API,广泛用于游戏开发和图形应用。Graphics Gems 项目中的许多算法可以直接与 OpenGL 结合使用,提升图形渲染的效果。

4.2 Blender

Blender 是一个开源的三维建模和动画软件。Graphics Gems 项目中的几何处理算法可以用于增强 Blender 的建模功能,帮助开发者创建更复杂的三维模型。

4.3 Unity

Unity 是一个流行的游戏引擎,支持多种平台。Graphics Gems 项目中的光线追踪算法可以用于增强 Unity 的渲染效果,提升游戏的视觉质量。

通过结合这些生态项目,开发者可以更高效地构建复杂的图形应用。

GraphicsGems Code for the "Graphics Gems" book series GraphicsGems 项目地址: https://gitcode.com/gh_mirrors/gr/GraphicsGems

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

Preface xv Introduction xvii Mathematical Notation xix Pseudo-Code xxi Contributors xxvi 1 2D GEOMETRY Useful 2D Geometry 3 Trigonometry Summary 12 Useful Trigonometry 13 Trigonometric Functions at Select Points 18 Triangles 20 Generating Random Points in Triangles (649) 24 Fast Line–Edge Intersections on a Uniform Grid (651) 29GRAPHICS GEMS I Edited by ANDREW S. GLASSNER viii CONTENTS Anti-Aliasing Summary 37 Area of Intersection: Circle and a Half-Plane 38 Area of Intersection: Circle and a Thick Line 40 Area of Intersection: Two Circles 43 Vertical Distance from a Point to a Line 47 A Fast 2D Point-on-Line Test (654)49 Fast Circle–Rectangle Intersection Checking (656)51 2 2D RENDERING Circles of Integral Radius on Integer Lattices 57 Nice Numbers for Graph Labels (657)61 Efficient Generation of Sampling Jitter Using Look-up Tables (660)64 Scan Conversion Summary 75 Fast Anti-Aliasing Polygon Scan Conversion (662)76 Generic Convex Polygon Scan Conversion and Clipping (667)84 ConcavePolygon Scan Conversion (681)87 Fast Scan Conversion of Arbitrary Polygons 92 Line-Drawing Summary 98 Digital Line Drawing (685)99 Symmetric Double Step Line Algorithm (686) 101 Rendering Anti-Aliased Lines (690) 105 An Algorithm for Filling in 2D Wide Line Bevel Joints 107 Rendering Fat Lines on a Raster Grid 114GRAPHICS GEMS I Edited by ANDREW S. GLASSNER ix CONTENTS Two-Dimensional Clipping: A Vector-Based Approach (694) 121 Periodic Tilings of the Plane on a Raster 129 3 IMAGE PROCESSING Anti-Aliasing Filters Summary 143 Convenient Anti-Aliasing Filters That Minimize “Bumpy” Sampling 144 Filters for Common Resampling Tasks 147 Smoothing Enlarged Monochrome Images 166 Median Finding on a 3 × 3 Grid (711) 171 Ordered Dithering (713) 176 A Fast Algorithm for General Raster Rotation 179 Useful 1-to-1 Pixel Transforms 196 Alpha Blending 210 4 FRAME BUFFER TECHNIQUES Frame Buffers and Color Maps 215 Reading a Write-Only Write Mask 219 A Digital “Dissolve” Effect (715) 221 Mapping RGB Triples onto Four Bits (718) 233 What Are the Coordinates of a Pixel? 246 Proper Treatment of Pixels as Integers (719) 249 Normal Coding 257 Recording Animation in Binary Order for Progressive Temporal Refinement (720) 265GRAPHICS GEMS I Edited by ANDREW S. GLASSNER x CONTENTS 1-to-1 Pixel Transforms Optimized through Color-Map Manipulation 270 A Seed Fill Algorithm (721) 275 Filling a Region in a Frame Buffer 278 Precalculating Addresses for Fast Fills, Circles, and Lines 285 A Simple Method for Color Quantization: Octree Quantization 287 5 3D GEOMETRY Useful 3D Geometry 297 An Efficient Bounding Sphere (723) 301 Intersection of Two Lines in Three-Space 304 Intersection of Three Planes 305 Mapping Summary 306 Digital Cartography for Computer Graphics 307 Albers Equal-Area Conic Map Projection. (726) 321 Boxes and Spheres Summary 326 Spheres-to-Voxels Conversion 327 A Simple Method for Box-Sphere Intersection Testing (730) 335 6 3D RENDERING 3D Grid Hashing Function (733) 343 Backface Culling 346GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xi CONTENTS Fast Dot Products for Shading 348 Scanline Depth Gradient of a Z-Buffered Triangle 361 Simulating Fog and Haze 364 Interpretation of Texture Map Indices 366 Multidimensional Sum Tables 376 7 RAY TRACING A Simple Ray Rejection Test 385 Ray−Object Intersection Summary 387 Intersection of a Ray with a Sphere 388 An Efficient Ray−Polygon Intersection (735) 390 Fast Ray−Polygon Intersection 394 Fast Ray−Box Intersection (736) 395 Shadow Attenuation for Ray Tracing Transparent Objects 397 8 NUMERICAL AND PROGRAMMING TECHNIQUES Root Finding Summary 403 Cubic and Quartic Roots (738) 404 A Bézier Curve-Based Root-Finder (787) 408 Using Sturm Sequences to Bracket Real Roots of Polynomial Equations (743) 416 Distance Measures Summary 423GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xii CONTENTS A High-Speed, Low Precision Square Root (756) 424 A Fast Approximation to the Hypotenuse (758) 427 A Fast Approximation to 3D Euclidean Distance 432 Full-Precision Constants 434 Converting between Bits and Digits 435 Storage-free Swapping 436 Generating Random Integers 438 Fast 2D−3D Rotation 440 Bit Patterns for Encoding Angles 442 Bit Interleaving for Quad- or Octrees (759) 443 A Fast HSL-to-RGB Transform (763) 448 9 MATRIX TECHNIQUES Matrix Identities 453 Rotation Matrix Methods Summary 455 Transforming Axes 456 Fast Matrix Multiplication 460 A Virtual Trackball 462 Matrix Orthogonalization (765) 464 Rotation Tools 465 Matrix Inversion (766) 470 Matrices and Transformations 472 Efficient Post-Concatenation of Transformation Matrices (770) 476GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xiii CONTENTS 10 MODELING AND TRANSFORMATIONS Transformation Identities 485 Fixed-Point Trigonometry with CORDIC Iterations (773) 494 Using Quaternions for Coding 3D Transformations (775) 498 3D Viewing and Rotation Using Orthonormal Bases (778) 516 The Use of Coordinate Frames in Computer Graphics 522 Forms, Vectors, and Transforms (780) 533 Properties of Surface-Normal Transformations 539 Transforming Axis-Aligned Bounding Boxes (785) 548 Constructing Shapes Summary 551 Defining Surfaces from Sampled Data 552 Defining Surfaces from Contour Data 558 Computing Surface Normals for 3D Models 562 Calculation of Reference Frames along a Space Curve 567 11 CURVES AND SURFACES Planar Cubic Curves 575 Explicit Cubic Spline Interpolation Formulas 579 Fast Spline Drawing 585 Some Properties of Bézier Curves 587 Tutorial on Forward Differencing 594 Integration of Bernstein Basis Functions 604GRAPHICS GEMS I Edited by ANDREW S. GLASSNER xiv CONTENTS Solving the Nearest-Point-on-Curve Problem (787) 607 An Algorithm for Automatically Fitting Digitized Curves (797) 612 References 808 Index
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裘旻烁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值