深度学习图像匹配:CVPR15论文实现项目推荐

深度学习图像匹配:CVPR15论文实现项目推荐

cvpr15deepcompare Code and models for "Learning to Compare Image Patches via Convolutional Neural Networks" cvpr15deepcompare 项目地址: https://gitcode.com/gh_mirrors/cv/cvpr15deepcompare

项目介绍

本项目是基于CVPR 2015论文《Learning to Compare Image Patches via Convolutional Neural Networks》的开源实现。该项目旨在通过卷积神经网络(CNN)来学习和比较图像块,从而实现高效的图像匹配和特征提取。项目提供了多种模型和接口,支持Torch、MATLAB、OpenCV和C++等多种编程环境,使得研究人员和开发者能够轻松地将这些先进的图像匹配技术应用到自己的项目中。

项目技术分析

核心技术

  1. 卷积神经网络(CNN):项目利用CNN来学习和比较图像块,通过多层卷积和池化操作提取图像特征,最终输出图像块之间的相似度评分。
  2. 多模型支持:项目提供了多种预训练模型,包括2ch、2ch2stream、2chdeep、siam和siam2stream等,每种模型在不同的数据集上进行了训练,具有不同的性能表现。
  3. 跨平台支持:项目不仅支持Torch,还提供了C++、MATLAB和OpenCV的接口,使得用户可以在不同的编程环境中使用这些模型。

技术细节

  • 模型训练:原始模型使用Torch进行训练,并提供了Torch7和二进制格式的模型文件,无需安装Torch即可使用。
  • 数据预处理:所有模型期望输入的图像块在[0,1]范围内,并在输入前进行均值减法。
  • CUDA加速:项目支持CUDA加速,通过cudnn.convert函数可以将模型转换为更快的cudnn后端。

项目及技术应用场景

应用场景

  1. 图像检索:通过比较图像块的相似度,可以实现高效的图像检索系统。
  2. 特征匹配:在计算机视觉任务中,如图像拼接、三维重建等,特征匹配是关键步骤,本项目提供的模型可以显著提升匹配精度。
  3. 深度学习研究:对于从事深度学习研究的研究人员,本项目提供了丰富的预训练模型和代码示例,可以作为进一步研究的起点。

技术优势

  • 高效性:通过CNN提取的特征具有较高的判别力,能够显著提升图像匹配的准确性。
  • 灵活性:支持多种编程环境和模型格式,用户可以根据自己的需求选择合适的工具和模型。
  • 易用性:项目提供了详细的文档和示例代码,用户可以快速上手并集成到自己的项目中。

项目特点

特点总结

  1. 多模型支持:提供了多种预训练模型,适用于不同的应用场景。
  2. 跨平台接口:支持Torch、C++、MATLAB和OpenCV,满足不同开发者的需求。
  3. CUDA加速:支持CUDA加速,提升计算效率。
  4. 开源免费:项目完全开源,用户可以自由下载和使用,适用于内部研究和评估。

未来展望

项目团队将持续更新和优化代码,增加新的模型和功能,以适应不断发展的计算机视觉领域。同时,项目也欢迎社区的贡献和反馈,共同推动图像匹配技术的发展。

结语

本项目不仅为研究人员提供了一个强大的工具,也为开发者提供了一个高效的图像匹配解决方案。无论你是从事计算机视觉研究,还是开发实际应用,这个项目都值得一试。立即访问项目仓库,开始你的图像匹配之旅吧!

项目仓库链接

cvpr15deepcompare Code and models for "Learning to Compare Image Patches via Convolutional Neural Networks" cvpr15deepcompare 项目地址: https://gitcode.com/gh_mirrors/cv/cvpr15deepcompare

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

第l章绪论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1 1.1研究的目的及意义⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1 1.2图像识别概述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一l 1.2.1图像的特征提取⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 1.2.2图像识别的方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 1.3深度学习的发展和研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..4 1.3.1深度学习的发展⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 1.3.2深度学习的研究现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 1.4特征学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..7 1.5主要研究工作及章节安排⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..8 1.5.1主要研究工作⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 1.5.2论文章节安排⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 第2章深度学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ll 2.1什么是深度学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 2.1.1深度学习的概念⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1l 2.1.2浅层学习和深度学习⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..12 2.2深度学习的结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 2.3深度学习常用方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 2.3.1深度信念网络⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..14 2.3.2卷积神经网络⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..15 2.3.3卷积深度信念网络⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..15 2.3.4深度玻尔兹曼机⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..16 2.3.5栈式自动编码器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..16 2.4 I也M⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一17 2.4.1 I心M的结构⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17 V 万方数据 太原理工大学硕士研究生学位论文 2.4.2 RBM的训练⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19 2.5 CI也M⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 2.6本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯23 第3章深度学习结合SVM的图像识别方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.25 3.1支持向量机⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25 3.2数据预处理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29 3.2.1数据归一化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..29 3.2.2白化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..30 3.2.3数据模块化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..3 1 3.3深度学习结合支持向量机的分类方法⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯32 3.3.1数据初始化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..32 3.3.2模型描述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一32 3.3.3训练和分类过程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..33 3.3.4 MINIST数据集简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35 3.4实验结果和分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯35 3.4.1样本数、节点数、层数的影响⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一36 3.4.2 SVM参数的影响⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯38 3.5本章小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4l 第4章改进的CDBN用于图像识别⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43 4.1无监督预训练⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43 4.2交替进行无监督和有监督学习的基本思想⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43 4.3卷积和池化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯44 4.4 So胁ax分类器⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.45 4.5基于改进的深度网络的图像识别⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯46 4.5.1模型描述⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一46 4.5.2 Cifar-10数据集简介⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯47
#模板匹配 import cv2 as cv import numpy as np def template_demo(): dog = cv.imread("E:/opencv/picture/dog.jpg") dog_nose = cv.imread("E:/opencv/picture/nose.jpg") cv.imshow("dog",dog) result = cv.matchTemplate(dog,dog_nose,cv.TM_CCORR_NORMED) h,w =dog_nose.shape[:2] min_val,max_val,min_loc,max_loc=cv.minMaxLoc(result) pt1 = max_loc pt2 = (pt1[0]+w,pt1[1]+h) cv.rectangle(dog,pt1,pt2,(0,255,0),2) cv.imshow("match",dog) print(result) #src = cv.imread("E:/opencv/picture/dog.jpg") #cv.imshow("inital_window",src) template_demo() cv.waitKey(0) cv.destroyAllWindows() 分析: 模板匹配通常用于目标检测。本文我们检测狗图片的鼻子。 • 我们需要两个主要组件: 1. 源图像(I):我们期望找到与模板图像匹配的图像 2. 模板图像(T):将与模板图像进行比较的补丁图像 1. result = cv.matchTemplate(dog,dog_nose,cv.TM_CCORR_NORMED) void cv::matchTemplate( cv::InputArray image, // 待匹配图像W*H cv::InputArray templ, // 模板图像,和image类型相同, 大小 w*h cv::OutputArray result, // 匹配结果图像, 类型 32F, 大小 (W-w+1)*(H-h+1) int method // 用于比较的方法 ); 其中method有: TM_SQDIFF_NORMED匹配数值越低表示匹配效果越好 TM_CCORR_NORMED,TM_CCOEFF_NORMED匹配数值越大表示匹配效果越好 result参数:(保存各个点匹配结果的参数) 模板匹配函数cvMatchTemplate依次计算模板与待测图片的重叠区域的相似度,并将结果存入映射图像result当中,也就是说result图像中的每一个点的值代表了一次相似度比较结果 模板在待测图像上每次在横向或是纵向上移动一个像素,并作一次比较计算 我们可以通过cv.minMaxLoc函数来确定结果矩阵的最大值和最小值的位置。 2. cv.minMaxLoc(result) 返回result数值中最小值以及最小值所在的位置和最大值以及最大值所在的位置。 3. 当知道哪个点匹配度最高时这个时候我们需要用矩阵把模板给标出来 C++: void rectangle(Mat& img, Point pt1,Point pt2,const Scalar& color, int thickness=1, int lineType=8, int shift=0) 第一个参数:要在哪个图像上画? 第二个参数:矩阵的左上角点坐标 第三个参数:矩阵的右下角点坐标 第四个参数:颜色
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

樊声嘉Jack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值