电阻式触摸屏的驱动比较简单,可以采用输入子系统驱动框架来编写,而电容式触摸屏的驱动程序相对比较复杂,因为电容触控一般采用I2C接口控制,我在自己编写电容触控驱动的时候郁闷了好几天,当然,并不是因为I2C电容触控驱动繁琐,主要是天嵌TQ210的触摸屏驱动程序是以模块方式提供的,并不开放源代码,也没有提供触控的芯片手册,我曾通过技术咨询群和电话咨询的方式咨询过天嵌相关人士,想跟他们索取触控协议而不要所谓的触控驱动程序源码,但受保密协议限制不提供源码及手册。我们不去追究这些无聊的问题,只要找到触控芯片的型号并根据触控芯片型号找到对应的手册,然后就可以自己编写所谓的电容式触摸屏驱动了。
一 触控芯片分析
首先,卸下触摸屏的四个螺丝并翻过触摸屏来观察,可以在在触摸屏排线上看到触控芯片,仔细观察芯片型号(如果看不清可以用放大镜配合手电筒观看),我们可以看到,TQ210的触摸屏控制芯片是GT811,然后我找到了GT811的芯片手册(这些资料都上传到了我的优快云资源里,请您支持一下),有了手册,编写驱动就不难了。
GT811引出了6根脚,分别是VCC、GND、I2CSDA、I2CSCL、INT和RESET,虽然INT脚不是必须的,但是开发高效省资源的触屏驱动程序往往都采用中断方式,下面是GT811的引脚图:
我用万能表实际测量了一下触控模块的各个引脚,实际线序是GND、SDA、SDL、INT、RESET和VDD。GT811的初始化顺序如下:
(1) 初始化INT脚为悬浮输入态并初始化RESET脚为输出态,并输出低电平
(2) 延时1ms
(3) 初始化RESET脚为悬浮输入态,并使能上拉
(4) 写入GT811寄存器配置表
(5) 根据需要配置INT脚
具体的操作可以参见代码部分。
二 I2C驱动编写
I2C驱动也是基于总线结构的,不过分为两种,一种是Legacy方式,另一种是New Style方式,其中,Legacy方式在新内核中已经不支持了,不过韦东山老师的视频中还是分析的Legacy方式,New Style方式你可以自己用Source Insight追踪分析一下,我这里就不多说了,具体的可以参考下面的代码。
#include <linux/module.h>
#include <linux/input.h>
#include <linux/i2c.h>
#include <linux/gpio.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <plat/gpio-cfg.h>
#include <linux/interrupt.h>
const static unsigned short normal_address[] = {0x5d, I2C_CLIENT_END};
static unsigned gt811_rst;
static unsigned gt811_int;
static struct input_dev *ts_input;
static struct workqueue_struct *wq;
static struct work_struct work;
static struct i2c_client * this_client = NULL;
static unsigned int status = 0;
static int i2c_read_bytes(struct i2c_client *client, uint8_t *buf, int len)
{
struct i2c_msg msgs[2];
int ret=-1;
msgs[0].flags=!I2C_M_RD;
msgs[0].addr=client->addr;
msgs[0].len=2;
msgs[0].buf=&buf[0];
msgs[1].flags=I2C_M_RD;
msgs[1].addr=client->addr;
msgs[1].len=len-2;
msgs[1].buf=&buf[2];
ret=i2c_transfer(client->adapter,msgs, 2);
return ret;
}
static int i2c_write_bytes(struct i2c_client *client,uint8_t *data,int len)
{
struct i2c_msg msg;
int ret=-1;
msg.flags=!I2C_M_RD;
msg.addr=client->addr;
msg.len=len;
msg.buf=data;
ret=i2c_transfer(client->adapter,&msg, 1);
return ret;
}
static const struct i2c_device_id ts_id[] = {
{ "tq210-ts", 0 },
{ }
};
static int ts_init_panel(struct i2c_client *client){
short ret=-1;
uint8_t config_info[] = {
0x06,0xA2,
0x12,0x10,0x0E,0x0C,0x0A,0x08,0x06,0x04,0x02,0x00,0xE2,0x53,0xD2,0x53,0xC2,0x53,
0xB2,0x53,0xA2,0x53,0x92,0x53,0x82,0x53,0x72,0x53,0x62,0x53,0x52,0x53,0x42,0x53,
0x32,0x53,0x22,0x53,0x12,0x53,0x02,0x53,0xF2,0x53,0x0F,0x13,0x40,0x40,0x40,0x10,
0x10,0x10,0x0F,0x0F,0x0A,0x35,0x25,0x0C,0x03,0x00,0x05,0x20,0x03,0xE0,0x01,0x00,
0x00,0x34,0x2C,0x36,0x2E,0x00,0x00,0x03,0x19,0x03,0x08,0x00,0x00,0x00,0x00,0x00,
0x14,0x10,0xEC,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x0D,0x40,
0x30,0x3C,0x28,0x00,0x00,0x00,0x00,0xC0,0x12,0x01
};
config_info[62] = 480 >> 8;
config_info[61] = 480 & 0xff;
config_info[64] = 800 >> 8;
config_info[63] = 800 & 0xff;
ret = i2c_write_bytes(client, config_info, sizeof(config_info)/sizeof(config_info[0]));
if(ret < 0) {
printk(KERN_ERR "GT811 Send config failed!\n");
return ret;
}
return 0;
}
static irqreturn_t gt811_int_handler(int irq, void *devid){
disable_irq_nosync(this_client->irq);
queue_work(wq, &work);
return IRQ_RETVAL(IRQ_HANDLED);
}
static void ts_work_func(struct work_struct* work){
int ret;
unsigned char point_data[19] = {0x07, 0x21, 0};
unsigned short input_x = 0;
unsigned short input_y = 0;
unsigned short input_p = 0;
ret=i2c_read_bytes(this_client, point_data, sizeof(point_data)/sizeof(point_data[0]));
if(ret <= 0){
printk("Failed\n");
return;
}
if(point_data[2]&0x1){
status = 1;
input_y = 479-((point_data[4]<<8)|point_data[5]);
input_x = 799-((point_data[6]<<8)|point_data[7]);
input_p = point_data[8];
printk("stat: %d, x: %d, y: %d, p: %d\n", point_data[2], input_x, input_y,
input_p);
}
else if(status){
status = 0;
printk("up\n");
}
enable_irq(this_client->irq);
}
static int ts_probe(struct i2c_client *client, const struct i2c_device_id *id){
int retry, ret;
char test_data;
printk("ts_probe\n");
test_data = 0;
gt811_rst = S5PV210_GPD0(3);
gt811_int = S5PV210_GPH1(6);
gpio_request(gt811_rst, "reset");
gpio_request(gt811_rst, "tsint");
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
{
dev_err(&client->dev, "Must have I2C_FUNC_I2C.\n");
return -ENODEV;
}
s3c_gpio_setpull(gt811_rst, S3C_GPIO_PULL_UP);
for(retry=0;retry < 5; retry++)
{
gpio_direction_output(gt811_rst, 0);
msleep(1);
gpio_direction_input(gt811_rst);
msleep(100);
ret =i2c_write_bytes(client, &test_data, 1);
if (ret > 0)
break;
dev_info(&client->dev, "GT811 I2C TEST FAILED!Please check the HARDWARE connect\n");
}
if(ret <= 0)
{
dev_err(&client->dev, "Warnning: I2C communication might be ERROR!\n");
return -ENODEV;
}
for(retry = 0; retry != 5; ++ retry){
ret = ts_init_panel(client);
if(ret != 0){
continue;
}
else{
break;
}
}
if(ret != 0){
printk("GT811 Configue failed!\n");
return -ENODEV;
}
this_client = client;
ts_input = input_allocate_device();
if(IS_ERR(ts_input)){
printk("GT811 allocate ts input device failed!\n");
return -ENOMEM;
}
ts_input->evbit[0] = BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS) ;
ts_input->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
ts_input->absbit[0] = BIT(ABS_X) | BIT(ABS_Y) | BIT(ABS_PRESSURE);
input_set_abs_params(ts_input, ABS_Y, 0, 799, 0, 0);
input_set_abs_params(ts_input, ABS_X, 0, 479, 0, 0);
input_set_abs_params(ts_input, ABS_PRESSURE, 0, 255, 0, 0);
ts_input->name = "tq210-ts";
ts_input->phys = "input/ts";
ts_input->id.bustype = BUS_I2C;
ts_input->id.product = 0xBEEF;
ts_input->id.vendor =0xDEAD;
ret = input_register_device(ts_input);
if(ret < 0){
printk("Unable register %s input device!\n", ts_input->name);
input_free_device(ts_input);
return -ENOMEM;
}
client->irq = IRQ_EINT(14);
s3c_gpio_setpull(gt811_int, S3C_GPIO_PULL_UP);
if(request_irq(IRQ_EINT(14), gt811_int_handler, IRQF_TRIGGER_FALLING, "gt811-int", NULL) < 0){
printk("Request irq for gt811 failed!\n");
input_unregister_device(ts_input);
input_free_device(ts_input);
return -ENOMEM;
}
wq = create_workqueue("ts_handle_thread");
if(wq == NULL){
printk(KERN_ALERT "crete workqueue failed!\n");
input_unregister_device(ts_input);
input_free_device(ts_input);
free_irq(IRQ_EINT(14), NULL);
return -ENOMEM;
}
INIT_WORK(&work, ts_work_func);
return 0;
}
static int ts_remove(struct i2c_client *client){
free_irq(IRQ_EINT(14), NULL);
enable_irq(client->irq);
flush_workqueue(wq);
destroy_workqueue(wq);
input_unregister_device(ts_input);
input_free_device(ts_input);
gpio_free(gt811_rst);
gpio_free(gt811_int);
return 0;
}
static struct i2c_driver ts_driver = {
.driver = {
.name = "tq210-ts",
.owner = THIS_MODULE,
},
.probe = ts_probe,
.remove = ts_remove,
.id_table = ts_id,
.address_list = normal_address,
};
static int ts_init(void){
printk("init\n");
i2c_add_driver(&ts_driver);
return 0;
}
static void ts_exit(void){
i2c_del_driver(&ts_driver);
printk("exit\n");
}
module_init(ts_init);
module_exit(ts_exit);
MODULE_LICENSE("GPL");
这并不是完整的代码,一方面是没有做异常处理,另一方面是没有上报消息,只是简单的驱动了TQ210的触摸屏部分,如果您需要拿去自己略作修改即可使用。
三 注册TS的I2C模块设备
static struct i2c_board_info smdkv210_i2c_devs2[] __initdata = {
/* To Be Updated */
{ I2C_BOARD_INFO("tq210-ts", 0x5d), },
};
四 tslib测试教程(ubuntu)
sudo apt-get install git
2. 下载最新的tslib
git clone https://github.com/kergoth/tslib
3. 安装auto
sudo apt-get install autoconf automake libtool
4. 编译tslib
./autogen.sh
mkdir tmp
echo "ac_cv_func_malloc_0_nonnull=yes" >arm-linux.cache
./configure --host=arm-linux --cache-file=arm-linux.cache --prefix=$(pwd)/tmp
make
make install
5. 安装tslib
cd tmp
cp * /nfsroot/rootfs -rfd
6. 配置tslib
修改 /etc/ts.conf
将行
# module_raw input
改为:
module_raw input
(实际上就是去掉高行的#号和第一个空格)
7. 配置tslib运行环境变量
export TSLIB_TSDEVICE=/dev/input/event1 //这里需要根据自己的event位置进行修改,新内核在/dev/input/event*
export TSLIB_CALIBFILE=/etc/pointercal
export TSLIB_CONFFILE=/etc/ts.conf
export TSLIB_PLUGINDIR=/lib/ts
export TSLIB_CONSOLEDEVICE=none
export TSLIB_FBDEVICE=/dev/fb0
8. 校正(电容屏实际上不需要校正,仅为了测试触屏驱动)
运行ts_calibrate,并根据提示进行校正
9. 自由画图
运行ts_test,点击draw按钮,可以自由画图,效果如下图。
五 小结
