Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: 2 / \ 1 3 Output: true
Example 2:
5 / \ 1 4 / \ 3 6 Output: false Explanation: The input is: [5,1,4,null,null,3,6]. The root node's value is 5 but its right child's value is 4.
思考:判断一棵二叉树是否为有效的二叉搜索树,对于该题,我们可以使用自顶向下的递归方式进行判断。再对其左子树,右子树进行判断。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
if(root==null){
return true;
}
return isBST(root,null,null);
}
public boolean isBST(TreeNode root,Integer lower_limit,Integer upper_limit){
if((lower_limit != null) && (root.val <= lower_limit)){
return false;
}
if((upper_limit != null) && (root.val >= upper_limit)){
return false;
}
boolean left = root.left != null? isBST(root.left,lower_limit,root.val):true;
if(left) {
boolean right = root.right != null? isBST(root.right,root.val,upper_limit):true;
return right;
} else {
return false;
}
}
}