目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】复杂背景下目标检测

目录

前言

算法原理

评价指标

正样本与负样本

真正(TP)、假正(FP)、真负(TN)、假负(FN)

交并比(IoU)

准确率(Precision)

召回率 (Recall)

几何平均分(F Score)

单类平均准确率(Average-Precision)

代码实现 mAP

网络模型

多层特征融合

基于深度学习的目标检测

基于候选区域的目标检测算法综述

2.1 R-CNN系列基础框架的发展史

2.2 基于Faster R-CNN的改进研究

3 基于回归的目标检测算法综述

3.1 YOLO系列目标检测算法

3.2 SSD系列目标检测算法

4 相关数据集综述


 

前言

复杂背景下的目标检测是计算机视觉领域中一个十分重要的课题. 传统的目标检测方法面临以下两个问题: 一是基于滑动窗口的区域选择策略容易产生窗口冗余; 二是手工设计的特征对于目标多样性的变化并没有好的鲁棒性. 因此, 基于深度学习的目标检测方法开始受到人们的广泛关注. 深度学习方法能克服传统人工选取特征的缺点, 自适应地学习表征目标的最佳特征, 且抗干扰性能优异, 可以有效提高目标识别的准确性和鲁棒性[1].

在深度学习目标检测模型中, 具有代表性的是Girshick等[2]提出的一系列目标检测算法, 其开山之作是R-CNN (region-convolutional neural network). 针对R-CNN训练时间过长的问题, Girshick[3]又提出了Fast R-CNN. 与R-CNN类似, Fast R-CNN依然采用selective search[4]生成候选区域, 但是, 与R-CNN提取出所有候选区域并使用SVM分类的方法不同, Fast R-CNN在整张图片上使用CNN, 然后使用特征映射提取感兴趣区域(region of interest, RoI); 同时, 利用反向传播网络进行分类和回归. 该方法不仅检测速度快, 而且具有RoI集中层和全连接层, 使得模型可求导, 更容易训练. Ren等[5]又提出了Fast R-CNN的升级版本Faster R-CNN算法. Faster R-CNN是第一个真正意义上端到端的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

格图素书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值