自定义
y_hat = tf.constant(36,name="y_hat")
loss = tf.Variable((y-y_hat)**2,name="loss" )
x=tf.placeholder(tf.int64,name="x")
tf.Session().run(x*2,feed_dict={x:3})
tf.cast(变量,dtype=tf.float32)
tf.matmul(矩阵A,矩阵B)
基本操作
tf.transpose:转置
input_data = tf.constant([[1, 2, 3], [4, 5, 6]])
print(sess.run(tf.transpose(input_data)))
tf.reduce_mean:求平均值(降维)
x = [[1,2,3],
[1,2,3]]
xx = tf.cast(x,tf.float32)
mean_all = tf.reduce_mean(xx, keep_dims=False)
mean_0 = tf.reduce_mean(xx, axis=0, keep_dims=False)
mean_1 = tf.reduce_mean(xx, axis=1, keep_dims=False)
with tf.Session() as sess:
m_a,m_0,m_1 = sess.run([mean_all, mean_0, mean_1])
print m_a
print m_0
print m_1
tf.argmax:取最大值的index
tf.argmax(input,axis)
test = np.array([[1, 2, 3], [2, 3, 4], [5, 4, 3], [8, 7, 2]])
test[0] = array([1, 2, 3])
test[1] = array([2, 3, 4])
test[2] = array([5, 4, 3])
test[3] = array([8, 7, 2])
test[0] = array([1, 2, 3])
test[1] = array([2, 3, 4])
test[2] = array([5, 4, 3])
test[3] = array([8, 7, 2])
tf.placeholder:占位符
X = tf.placeholder(tf.float32, [n_x, None], name="X")
tf.Session().run(X,feed_dict={X:X_train})
tensorboard:可视化图
summary_writer=tf.summary.FileWriter("summary")
summary_writer.add_graph(sess.graph)
merge=tf.summary.merge_all()
_,epoch_cost,summary=sess.run([optmizer,cost,merge],feed_dict={X:X_train,Y:Y_train})
summary_writer.add_summary(summary, epoch)
summary_writer.close()
tf.variable_scope:变量域
with tf.variable_scope(""):
tf.train.Saver:管理模型的保存与加载
saver = tf.train.Saver()
saver=tf.train.Saver(sess,"model/")
saver.restore(sess, 'model/')