Dating with girls(1)(二分)

本文介绍了一个算法问题,即求解给定整数集合中满足特定方程x+y=k的不同组合的数量。通过使用二分查找的方法,有效地解决了这一问题,并提供了完整的AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Everyone in the HDU knows that the number of boys is larger than the number of girls. But now, every boy wants to date with pretty girls. The girls like to date with the boys with higher IQ. In order to test the boys ' IQ, The girls make a problem, and the boys who can solve the problem 
correctly and cost less time can date with them.
The problem is that : give you n positive integers and an integer k. You need to calculate how many different solutions the equation x + y = k has . x and y must be among the given n integers. Two solutions are different if x0 != x1 or y0 != y1.
Now smart Acmers, solving the problem as soon as possible. So you can dating with pretty girls. How wonderful!
 

Input

The first line contain an integer T. Then T cases followed. Each case begins with two integers n(2 <= n <= 100000) , k(0 <= k < 2^31). And then the next line contain n integers.
 

Output

For each cases,output the numbers of solutions to the equation.
 

Sample Input

2 5 4 1 2 3 4 5 8 8 1 4 5 7 8 9 2 6
 

Sample Output

3 5
 


解题思路

一组数要求其中两个数和为k的组合个数,a+b与b+a算两种(a=b时算一种);

二分查找,注意可能有重复数字



AC代码

#include<stdio.h>
#include<string.h>
#include<stdlib.h>

int cmp(const void*a, const void*b)
{
    return *(int*)a-*(int*)b;
}

int main()
{
    int T,h,n,k,i,j,move,cnt,a[100001],L,high,low,mid,flag;
    scanf("%d",&T);
    for(h=0;h<T;h++)
    {
        scanf("%d%d",&n,&k);
        for(i=0;i<n;i++)
            scanf("%d",&a[i]);
        qsort(a,n,sizeof(a[0]),cmp);

        cnt=0;
        flag=0;
        for(i=0;i<n;i++)
        {
            if(a[i]==a[i-1])                                                     //不需要特意去重,直接跳过即可;
                continue;
            if(a[i]>k/2)                                                         //剪枝,k/2后是重复查找
                break;
            if(a[i]==k/2 && k%2==0)                                              //flag记录a=b && a+b=k 的有无
            {
                flag=1;
                continue;
            }
            high=n;  low=i;
            while(low<=high)
            {
                mid=(low+high)/2;
                if(a[mid] < k-a[i])
                    low=mid+1;
                else if( a[mid] > k-a[i] )
                    high=mid-1;
                else
                {
                    cnt++;
                    break;
                }
            }
        }

        printf("%d\n",cnt*2+flag);

    }

    return 0;

}









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值