Description
Given a set of sticks of various lengths, is it possible to join them end-to-end to form a square?
Input
The first line of input contains N, the number of test cases. Each test case begins with an integer 4 <= M <= 20, the number of sticks. M integers follow; each gives the length of a stick - an integer between 1 and 10,000.
Output
For each case, output a line containing "yes" if is is possible to form a square; otherwise output "no".
Sample Input
3 4 1 1 1 1 5 10 20 30 40 50 8 1 7 2 6 4 4 3 5
Sample Output
yes no yes
解题思路
n个木棒能否构成正方形 且 都要用上,按边来深搜,
当返回到最初的dfs中,for循环结束未能return 1;则返回值0到主函数中;
count是当前层的count,如当从第二条边回溯到第一条边时,此时count=0;
AC代码
#include<stdio.h>
#include<string.h>
int a[21];
bool used[21];
int n,m,sum;
int dfs(int d, int w, int count)
{
if(d == sum) //d==sum时返回值1到上一层,进行return 1;再返回到上一层,
{
w=0; d=0; count++;
if(count == 3)
return 1;
}
for(int i=w; i<m; i++)
if(!used[i])
{
used[i] = 1;
if((d+a[i] <= sum ) && dfs(d+a[i], i+1, count))
return 1;
used[i] = 0;
}
return 0; //当前边不能构成,返回上一层
}
int main()
{
scanf("%d",&n);
while(n--)
{
scanf("%d",&m);
sum=0;
memset(used, 0, sizeof(used));
for(int i=0; i<m; i++)
{
scanf("%d",&a[i]);
sum += a[i];
}
int flag=0;
if(sum%4 == 0) //构成正方形的先行条件
{
sum /= 4;
flag=dfs(0, 0, 0);
}
if(flag)
printf("yes\n");
else
printf("no\n");
}
return 0;
}