Perfect Permutation

该问题要求构造一种特殊的排列——完美排列,即一个长度为n的序列,其中每个元素等于其索引且不与其所在位置相同。当n为偶数时存在完美排列,此时可以将1到n的数字两两配对,交换每对数字的位置。输入一个整数n,输出一个完美排列或-1表示不存在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

A permutation is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. Let's denote the i-th element of permutation p as pi. We'll call number n the size of permutation p1, p2, ..., pn.

Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation p that for any i(1 ≤ i ≤ n) (n is the permutation size) the following equations hold ppi = i and pi ≠ i. Nickolas asks you to print any perfect permutation of size n for the given n.

Input

A single line contains a single integer n (1 ≤ n ≤ 100) — the permutation size.

Output

If a perfect permutation of size n doesn't exist, print a single integer -1. Otherwise print n distinct integers from 1 to n, p1, p2, ..., pn — permutation p, that is perfect. Separate printed numbers by whitespaces.

Sample Input

Input
1
Output
-1
Input
2
Output
2 1 
Input
4
Output
2 1 4 3 


只有偶数有答案,两两翻转。

#include<cstdio>
#include<iostream>
using namespace std;

int main(){
    int n,i;
    while(cin>>n){
        if(n%2){
            cout<<"-1"<<endl;
        }
        else{
            for(i=1;i<=n;i+=2){
                if(i==n-1){
                    cout<<i+1<<" "<<i<<endl;
                }
                else{
                    cout<<i+1<<" "<<i<<" ";
                }
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值