【MCAL】TC397+EB-tresos之GPT配置实战 - 定时器

本文详细介绍了如何在TC397平台使用EB-tresos配置GPT和GPT12定时器,包括GTM和GPT12的工作原理、配置步骤、以及如何实现1ms和2ms定时器中断。涉及MCU配置、GPT/GPT12通道配置、中断处理和驱动程序调试等内容。

本篇文章介绍了在TC397平台使用EB-tresos对GPT驱动模块进行配置的实战过程,不仅介绍了使用GTM来实现定时器的方案,还介绍了基于GPT12来实现连续定时器的实例。因为GTM是德国博世公司开发的IP,而英飞凌的芯片集成了这个IP,并在这个基础上搭建了通用定时器等功能,所以一个简单如定时器这种单片机的常用功能,配置实现起来也感觉非常的割裂,鉴于这种情况,笔者在概述上尽量的补充了一些概念来帮助读者理解后面的实战内容,并补充了基于GPT12来实现定时器的方案。

目录

概述

GTM(Generic Timer Module) 

SCU(System Control Unit)

GPT12

环境与目标 

EB-tresos配置GPT实现1ms定时器

MCU配置

GTM配置 

GtmClusterConf_0

GtmGlobalConfiguration 

McuGtmTimChannelAllocationConf 

GPT配置

General

GptChannelConfiguration 

GptNotification

GtmTimerOutputModuleConfiguration 

IRQ配置

ResourceM配置

GPT驱动使用与调试

EB-tresos配置GPT实现2ms定时翻转I/O口

MCU配置

McuGpt12ModuleAllocationConf

McuPllDistributionSettingConfig

McuGpt12PrescalerConf

GPT配置 

GptChannelConfiguration

GptNotification 

Gpt12TimerOutputModuleConfiguration  

IRQ配置 

GPT12驱动使用与调试


概述

GPT(General Purpose Timer)驱动程序负责为 AUTOSAR规范中定义的标准计时器功能提供对应的API。相应的底层定时器引擎是可以是包含在AURIX2G系列处理器中的GTM定时器通道(TOM/ATOM slice)或者GPT12定时器。用户可以基于驱动程序配置实现多个通道,在每个通道上上层程序的可以执行以下操作:

  • 启动/停止定时器
  • 启用/禁用唤醒功能
  • 启用/禁用回调通知
  • 单次或连续操作模式
  • 使用TOM切片实现的GPT Predef Timer功能。

下图是英飞凌针对Autosar MCAL的架构实现,GPT位置如下。

下图为GPT驱动模块的软硬件调用接口图。


GTM(Generic Timer Module) 

GPT驱动利用GTM这个IP核提供的通道来实现连续定时模式、单次定时模式和预定义定时器。

连续和单次模式逻辑通道需要一个来自TOM(Timer Output Module)/ATOM(ARU-connected Timer Output Module)切片的定时器通道。预定义定时器仅使用GTM的IP核提供的TOM切片,因为TOM是16位定时器,跟24位定时器ATOM相比,它更容易实现通道的级联从而产生多种不同位数定时器的派生。举例说明,如果 fGTM 配置为可以直接推导特定的定时器所需的频率(如1us预定义定时器对应1MHz,100us 预定义定时器为10KHz),16位预置定时器只需要一个TOM 通道来实现n*1us/n*100us的定时器,则不需要TRIGOUT功能(通道级联),若fGTM配置为可以不能直接推导特定的定时器所需的频率,则首先由一个Tom通道来实现1us/100us的Tick频率,然后再级联下一个TOM通道来实现n*1us/n*100us的定时器。我们还可以利用这种TRIGOUT(级联)特性来使用多个TOM通道实现24位/32位定时器。

从上面可以得到结论,如果fGTM配置不能直接推导出定时器所需频率,且要实现一个24位/32位的定时器,那么我们需要3个通道,三个通道号需要按顺序依次递增。我们此次选用的GtmTimerUsed为GTMTom0Channel0。

时钟方面,fGTM可在MCU模块中的McuPllDistributionSettingConfig进行直接配置(200Mhz),因为CMU(Clock Management Unit)属于Cluster0,所以可以在GtmClusterConf_0里对其进行分频(2分频)得到fCLS0。

然后需要在McuGtmClockManagementConf里配置分频的分子与分母(分别为1)得到CmuGlobalClock,然后选择FixedClock源时钟为CmuGlobalClock,这样我们就可以将FixedClock2作为GPT模块的GtmTimerClock。最终时钟的计算为((200Mhz/2)/2^4)=6250 000Hz,则要得到一毫秒的中断,超时的Tick数应为6250。


SCU(System Control Unit)

GPT驱动程序的时钟取决于SCU这个IP核。通用定时器需要fGTM和fSPB(System Peripheral Bus)时钟信号。

SCU为所有外设提供时钟,MCU驱动程序负责配置芯片时钟树。为避免因同时写入而发生冲突,使用MCALLIB提供的API执行对所有ENDINIT保护寄存器的更新。


GPT12

GPT驱动使用GPT12这个IP核实现连续定时器模式和单次定时器模式,其并不支持预定义模式。使用 GPT1 模块实现连续模式逻辑通道需要两个定时器,核心定时器T3和辅助定时器之一(T2或T4)。使用 GPT2 模块实现连续模式逻辑通道只需要T6(使用CAPREL寄存器作为重新加载寄存器)。单次模式逻辑通道的实现只需要来自 GPT1 或 GPT2 块中的一个计时器。

GP1(T2,T3,T4)的所有三个定时器可以配置成四种基本模式:定时器模式,门控定时器模式,计数器模式或者增量接口模式。

下面简单针对其几个输入/输出引脚做一下解释。

  • TxIN:为门控模式下的门控信号(启动/停止计时)输入或者在计数器模式中用作输入。计数模式下可以通过T3CON寄存器中的位域T3I来控制输入上升沿计数还是下降沿。T3CON寄存器中的位域T3M可以选择定时器处于什么模式。
  • TxEUD:计数方向( 上/下)通过外部上/下控制输入 TxEUD( 具有引脚功能)上的信号来动态改变 。
  • 输出翻转锁存T3OTL :可指明内核定时器 T3 的上溢/下溢, 输出翻转锁存的状态在相关的引脚T3OUT(相关引脚功能) 上输出。

我们下边的例子实现的是连续定时器模式,所以用到了核心定时器T3和辅助定时器T2,T2用于重载核心定时器T3,T3的翻转锁存状态触发辅助定时器作为其T3的重载寄存器使用。辅助寄存器还可以作为捕获寄存器使用,在TxIN电平翻转的时候获取内核定时器的值。


环境与目标 

本文使用的为英飞凌提供的开发板KIT_A2G_TC397XA_TFT,芯片为TC397,外部的时钟为20Mhz。

涉及的软件如下。

涉及的参考文档如下表。

序号参考资料内容
1《Infineon-AURIX_TC39x-UserManual-v02_00-EN》英飞凌TC39x用户手册
2《ApplicationKitManual-TC3X7-ADAS-V21.pdf》开发板KIT_A2G_TC397XA_TFT说明
3《MC-ISAR_TC3xx_UM_Gpt.pdf》英飞凌提供的TC39x芯片Gpt用户手册

配置目标如下:

  1. 使用GPT实现1ms的定时器中断,在中断处理函数中累加值,用作系统时标。
  2. 使用GPT12实现2ms定时器中断,在中断处理函数中翻转I/O口状态。

EB-tresos配置GPT实现1ms定时器

MCU配置

配置GTM外设为200Mhz频率。


GTM配置 

GtmClusterConf_0

配置fCLS0为fGTM的二分频,即为100Mhz。


GtmGlobalConfiguration 

配置CMU的全局频率等于fCLS0(100Mhz),公式为。然后选择CMU的FixedClock来源为CMU的全局频率。


McuGtmTimChannelAllocationConf 

最后配置Tom0的Channel0用作GPT使用。


GPT配置

General

配置GPT模块General部分,需要我们注意的配置项有以下几个。

  • GptEnableDisableNotificationApi:使能回调函数的API,此处属于下面回调函数配置的开关。
  • GptTimeElapsedApi:已经运行时间的计数,例如本例子的1ms假设运行了0.3ms,这个API返回值为0.3ms的Ticks。
  • GptTimeRemainingApi:剩余时间的计数,例如本例子的1ms假设运行了0.3ms,这个APl返回值为剩余0.7ms的Ticks.


GptChannelConfiguration 

这里需要注意的配置有以下几个。

  • GptAssignedHwUnit:选择硬件时钟是GTM还是GPT12。
  • GptChannelMode:运行模式是连续还是单次触发。


GptNotification

中断函数命名为Gpt_1ms。


GtmTimerOutputModuleConfiguration 

选择GTM使用的Timer为Tom1Channel0。时钟源选择CMU输出的Fixed_Clock_1。


IRQ配置

可以看到TOM0的channel0中断输出使用的是SR0。


ResourceM配置

分配核0使用资源,添加GPT:GptChannelConfiguration_0。


GPT驱动使用与调试

首先,实现一个名为Gpt_1ms函数(形参和返回值均为Void)。

/**
* @brief       系统时标更新
*
* @param[in]   none
* @param[out]  none
*
* @return      none
*/

void Gpt_1ms(void)
{
    GetTimeglapsed = Gpt_GetTimerlapsed(GptConf_GptChannelConfiguration_GptChannelConfiguration_0);
    GetTimePemsining = Gpt_GetTimeFemaining(GptConf_GptChannelConfiguration_GptChannelConfiguration_0);

    /* 1ms Interrupt */
    if(GptDelay == TRUE)
    {
        Delaycount++;
    }
    
    mcal_tick_cnt++;
}

然后将MCAL的示例中的Gtm_Ir与Demo_Gpt添加到工程中。

在初始化过程中调用GPT_Demo()即可完成GPT的初始化。

记住按照计算的数值修改定时器溢出时的值为6250。

LOCAL_INLINE void Gpt_lStartDemo(void)
{
  /* Enable notification for Timer channel 0 */
  Gpt_EnableNotification(0);
  /* 16 bit max value in GPT12 timer */
  Gpt_StartTimer(0,6250U);
}

最后使用UDS下载程序到板卡中,在中断函数中打断点能正常进入。


EB-tresos配置GPT实现2ms定时翻转I/O口

MCU配置

McuGpt12ModuleAllocationConf

将辅助定时器T2与主定时器T3设置为GPT驱动。


McuPllDistributionSettingConfig

 因为fGPT = fSPB,所以配置fSPB为100Mhz。


McuGpt12PrescalerConf

配置GPT1的分频值。

根据手册,此处至少为4,经过如此的配置之后,GPT1的时钟参数如下图所示。


GPT配置 

GptChannelConfiguration

选择GPT12作为GPT的硬件实现单元。


GptNotification 

定义中断回调函数的名称为loHwAb_GptT3Notification。


Gpt12TimerOutputModuleConfiguration  


IRQ配置 

配置T3的中断优先级为19。


GPT12驱动使用与调试

首先,初始化部分我们要使能中断并且开启回调函数。

	/*gpt12 irq*/
	SRC_GPT120T3.B.SRE = 1;

	Gpt_EnableNotification(GptConf_GptChannelConfiguration_GptChannelConfiguration_GPT12);
	Gpt_StartTimer(GptConf_GptChannelConfiguration_GptChannelConfiguration_GPT12, 50000);
	Mcu_17_Gpt12_TimerStart(MCU_GPT12_TIMER3);

这里为什么Timer溢出的值为50000,是因为前面MCU阶段配置了4分频SPB为100Mhz。
那么100 000 000/4 = 25 000 000,即每秒运行Ticks为25 000 000,则2ms运行为25 00 000 / 1000* 2 = 50 000。

中断回调代码如下。

void IoHwAb_GptT3Notification(void)
{
 
	Dio_FlipChannel(DioConf_DioChannel_DioChannel_Flip);
 
}

最终测量IO口的翻转结果如下。


十六宿舍 原创作品,转载必须标注原文链接。

©2023 Yang Li. All rights reserved.

欢迎关注 『十六宿舍』,大家喜欢的话,给个👍,更多关于嵌入式相关技术的内容持续更新中。

<think>好的,用户想了解如何使用EB配置TC系列芯片的MCAL来测试PWM。首先,我需要回忆一下EB TresosTC系列芯片的相关知识。EB Tresos是用于配置AUTOSAR MCAL的工具,TC系列可能指的是英飞凌的Aurix TC系列芯片。 用户可能已经完成了MCAL配置,现在需要测试PWM功能。测试PWM通常涉及配置PWM模块、生成信号,然后通过示波器或逻辑分析仪验证波形是否正确。不过用户可能更关注软件层面的测试步骤,比如如何通过代码控制PWM参数,或者使用调试工具验证配置。 接下来,我需要考虑步骤。首先,配置PWM模块,设置周期、占空比、极性等参数。然后生成代码,编写应用代码初始化并启动PWM。测试方法可能包括测量引脚输出、使用调试工具查看寄存器状态,或者通过ADC读取反馈信号。 用户可能需要具体的代码示例,比如如何调用MCAL的API函数,以及注意事项,比如时钟配置是否正确,引脚复用是否设置正确。此外,常见问题如无输出可能是时钟源问题、引脚配置错误或占空比设置为0。 需要确保回答结构清晰,分步骤说明,同时提醒用户硬件连接和配置验证的重要性。可能还需要提到使用EB Tresos中的验证工具或调试器来检查配置是否正确加载。</think>以下为配置EB Tresos工具测试TC系列芯片PWM模块的步骤指南: 一、前期配置阶段 1. 创建工程框架 -EB Tresos中新建MCAL工程,选择对应TC3xx芯片型号 - 添加PWM模块(PWM_TC39x)到模块依赖列表 2. 参数配置(通过GUI界面) $$ PWM通道配置 \rightarrow \begin{cases} PWM频率 = \frac{f_{PWMCLK}}{Prescaler \times Period} \\ 占空比 = \frac{DutyCycle}{Period} \times 100\% \end{cases} $$ - 设置时钟源:选择SPB时钟或外部时钟输入 - 配置Prescaler分频系数 - 设定Period寄存器定义PWM周期 - 初始化Duty Cycle寄存器(建议设置为50%测试) 二、代码生成与集成 1. 生成MCAL代码 - 执行Generate命令生成PWM驱动代码 - 检查生成的PWM_PBcfg.c文件验证配置参数 2. 编写测试代码 ```c // 初始化MCAL Pwm_Init(&Pwm_Config); // 启动PWM通道 Pwm_SetOutputState(PWM_CHANNEL_0, PWM_OUTPUT_ACTIVE); // 动态修改占空比测试 Pwm_SetDutyCycle(PWM_CHANNEL_0, 1500); // 假设周期为3000个计数单位 ``` 三、测试验证方法 1. 硬件测量: - 使用示波器测量PWM输出引脚(如GPT12_TOUT0) - 验证波形参数:$T_{period} = \frac{1}{f_{measured}}$, $Duty = \frac{t_{high}}{T_{period}}}$ 2. 软件验证: - 通过调试器读取CCU6寄存器: - T12PR (周期寄存器) - T12CR (比较寄存器) - 检查TCTR4计数器的递增状态 四、故障排查要点 1. 无输出信号检测: - 确认端口控制寄存器PSPCR.PC使能 - 检查时钟树配置:$$ f_{PWM} = \frac{f_{SPB}}{(PSRx + 1) \times (预分频系数)} $$ - 验证CCU6模块时钟门控是否开启(CLC.DISR = 0) 2. 波形异常处理: - 边沿抖动:检查死区时间配置(DBCTRL寄存器) - 周期不匹配:重新计算预分频比 - 占空比误差:校准定时器计数模式(递增/递减/中央对齐) 建议测试时使用渐进式验证: 1. 先验证固定占空比(如50%) 2. 测试动态调整功能(0% → 25% → 75% → 100%循环) 3. 极限值测试(0.1%和99.9%占空比) 4. 切换不同时钟源验证频率稳定性 注:具体寄存器名称请参考TC39x用户手册第23章(GPT12模块)及第12章(时钟系统)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值