机器学习-周志华-第五章笔记 CNN

本文介绍了神经网络的基本概念,包括神经元模型、感知机及其学习规则、多层网络结构等,并探讨了深度学习的概念及训练方法。

Chapter 5 神经网络-机器学习-周志华

5.1神经元模型
  1. 神经网络:具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
  2. 神经元模型:一个神经元收到的刺激超过阈值(threshold/bias),它就会被激活。概括为M-P神经元模型:n个带权输入 与threshold比较 激活函数处理产生输出。
  3. 激活函数中1代表兴奋,0代表不兴奋。理想中激活函数位阶跃函数,为方便处理用连续的Sigmoid函数。
  4. 神经网络:神经元按一定层次结构连接。
  5. 神经网络可以视为包含了许多参数的数学模型,由若干函数(如 yj=f(iwixiθj) )相互嵌套得到。
5.2 感知机与多层网络
感知机
  1. 感知机有层神经网络,输出层为M-P神经单元——“阈值逻辑单元”。
  2. 各神经元的 ω θ 取适当的值,可以实现逻辑与、或、非运算。
  3. 给定训练集, ω θ 可以通过学习得到。 θ 可视为固定输入为1的哑结点(dummy node)。
  4. 感知机的学习规则:
    • 当前训练样例为(x,y),当前感知机输出位 y^ ,则权重调整为:
    • ωiωi+Δωi Δωi=η(yy^)xi
    • η 为学习率(learning rate)
  5. 感知机只有输出层神经元进行激活函数处理,即只有一层功能神经元(functional neuron)。
  6. 线性可分:存在线性超平面将两类模式分开。
  7. 若两类模式
    • 线性可分(如与、或、非),感知机的学习过程会收敛(vonverge);
    • 若线性不可分(如异或),则会发生振荡(fluctuation),不能稳定。
多层网络
  1. 解决非线性可分问题要使用多层功能神经元
  2. 隐层隐含层(hidden layer):输出层与输入层之间的一层神经元。
  3. 隐含层和输出层都具有激活函数。
  4. 多层前馈神经网络(multi-layer feedforward neural networks):
    • 每层神经元与下层完全互连
    • 同层间无连接
    • 无跨层连接
    • 输入层神经元的唯一作用是接受输入,不进行函数处理
    • 隐层和输出层包含功能神经元
  5. 神经网络的学习过程:根据训练数据调整神经元之间的“连接权”(connection weight),以及每个功能神经元的阈值
5.6 深度学习
  1. 深度学习(deep learning)是很深层的神经网络。其提高容量的方法是增加隐层数目,这比增加隐层神经元数目更有效,这样不但增加了拥有激活函数的神经元数目,而且增加了激活函数嵌套的层数。
  2. 该模型太复杂,下面给出两种节省开销的训练方法:无监督逐层训练、权共享。
  3. 无监督逐层训练(unsupervised layer-wise training):
    • 预训练(pre-training):每次训练一层,将上层作为输入,本层结果作为下层的输入。
    • 微调训练(fine-training):预训练结束后的微调。
    • 可视为将大量参数分组,每组先找到好的设置,基于局部较优进行全局寻优。
  4. 权共享(weight sharing):让一组神经元使用相同的连接权。这在卷积神经网络(Convolutional Neural Network,CNN)发挥了重要作用。
### 关于周志华机器学习第五章5.5节的内容解读 #### 5.5 集成方法 (Ensemble Methods) 在机器学习领域,集成方法是一种通过组合多个模型预测结果的技术,旨在提高整体性能并减少泛化误差。该章节主要探讨了几种重要的集成策略及其理论基础。 #### 提升算法(Boosting) 提升算法是一类迭代式的集成技术,在每一轮训练过程中赋予不同样本不同的权重,使得分类器更加关注之前被错误分类的数据点。AdaBoost作为最早也是最著名的代表之一,通过调整误分实例权值得到一系列弱分类器,并最终加权投票形成强分类器[^1]。 #### Bagging 和随机森林(Random Forest) Bagging即Bootstrap Aggregating, 是一种基于重采样的集成方式。对于给定数据集,bagging会创建若干子样本用于独立训练基估计量;而随机森林则是在决策树基础上进一步引入特征随机选取机制,从而降低过拟合风险并增强多样性。 #### Stacking Stacking 或堆叠泛化是一种更复杂的元学习框架,允许利用初级层多种类型的个体学习者输出作为次级层输入来进行更高层次的学习任务建模。这种方法能够充分利用不同类型模型的优势,达到更好的表现效果。 ```python from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split X, y = make_classification(n_samples=1000, n_features=20, n_informative=2, n_redundant=10, random_state=42) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) rf_clf = RandomForestClassifier() ada_clf = AdaBoostClassifier() rf_clf.fit(X_train, y_train) ada_clf.fit(X_train, y_train) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值