离散高斯抽样(Discrete Gaussian Sampling)

离散高斯抽样是一种在密码学中应用广泛的随机采样方法,遵循高斯分布,特别适用于基于格的加密和数字签名。它在离散集合上生成符合高斯特性的随机元素,增强密码安全。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散高斯抽样

离散高斯抽样(Discrete Gaussian Sampling)是一种常见于密码学和数学领域的随机采样方法。它通常用于构建基于格(lattice)的密码学方案,如基于格的加密和数字签名。Discrete Gaussian Sampling 的主要目的是从一个离散的集合中随机选择元素,同时遵循高斯分布(Gaussian distribution)的统计特性。

以下是 Discrete Gaussian Sampling 的一些关键概念和特点:

高斯分布: 高斯分布,又称正态分布,是概率论中的一种常见分布,它具有钟形曲线的形状。在 Discrete Gaussian Sampling 中,我们希望从一个离散的集合中按照高斯分布的方式随机选择元素。

离散集合: Discrete Gaussian Sampling 通常应用于离散集合,如整数或格点(lattice points)。这些集合中的元素通常表示为向量或多维点。

抽样参数: 抽样的高斯分布通常由两个主要参数来描述,即均值(mean)和标准差(standard deviation)。这些参数影响了高斯分布的形状和分布的"宽度"。在 Discrete Gaussian Sampling 中,这些参数通常与具体的密码学方案相关。

离散高斯分布: 在 Discrete Gaussian Sampling 中,高斯分布的离散性质意味着我们只能从离散集合中选择元素,而不是连续的实数。这使得在离散集合上采样并模拟高斯分布的难度增加。

密码学应用: 离散高斯抽样在密码学中具有广泛应用,特别是在基于格的密码学中。它用于生成随机的错误项,以增加密码方案的安全性。这些错误项的分布通常基于离散高斯分布,使得攻击者难以分辨有效信息和随机噪声。

总之,离散高斯抽样是一个在密码学和数学领域中重要的概念,用于生成满足高斯分布统计特性的离散值,以增加密码方案的安全性。它是许多基于格的密码学方案的基础之一。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值