在有些机器学习程序中,我们想要指定某些操作执行的依赖关系,这时可以使用tf.control_dependencies(control_inputs)
来实现。该函数返回一个控制依赖的上下文管理器,使用with
关键字可以让在这个上下文环境中的操作都在control_inputs
执行。
with g.control_dependencies([a, b, c]):
# 'd' and 'e' will only run after 'a', 'b', and 'c' have executed
d = ...
e = ...
可以嵌套control_dependencies
使用:
with g.control_dependencies([a, b]):
# Ops constructed here run after 'a' and 'b'
with g.control_dependencies([c, d]):
# Ops constructed here run after 'a', 'b', 'c', and 'd'
可以传入None
来消除依赖:
with g.control_dependencies([a, b]):
# Ops constructed here run after 'a' and 'b'
with g.control_dependencies(None):
# Ops constructed here run normally, not waiting for either 'a' or 'b'
with g.control_dependencies([c, d]):
# Ops constructed here run after 'c' and 'd',
# also not waiting for either 'a' or 'b'
注意,控制依赖只对那些在上下文环境中建立的操作有效,仅仅在context
中使用一个操作或张量是没用的:
def my_func(pred, tensor): # WRONG
t = tf.matmul(tensor, tensor)
with tf.control_dependencies([pred]):
# The matmul op is created outside the context,
# so no control dependency will be added
return t
def my_func(pred, tensor): # RIGHT
with tf.control_dependencies([pred]):
# The matmul op is created in the context,
# so a control dependency will be added
return tf.matmul(tensor, tensor)