09 | 你的工作可以用数字衡量吗?

本文强调了在工作中重视数字和测量指标的重要性,指出数字是诠释目标的最佳方式,能避免模糊和误解。作者分享了如何利用数字进行技术决策、监控系统健康和发现问题的案例,并提倡在工作中引入数据驱动的思维方式,以提高效率和减少争论。通过设定和跟踪关键指标,团队可以更有效地推进工作并确保系统稳定性。

今天的分享从日常工作开始。请你回想一下,你每天到岗之后做的第一件事是什么呢?然后你来猜猜我的答案是什么?你可能猜不到,我每天到公司之后,第一件正事是看数字

我现在服务于一家做数字资产的公司,我们提供的是一个24小时运行的服务。从加入这家公司的第一天开始,公司的人就给我不断灌输一个重要理念——看数字。在我座位的正前方,摆着一个巨大的显示器,上面展示着各种不断变换的曲线、柱状图和数字,这些数字反映的是各种系统运行的指标。

我们就是每天看着这些指标,来发掘一些线上系统问题的,一旦某些指标出现自己不能理解的异常,就要着手调查。

你或许会纳闷,我们不是在探讨“以终为始”吗?怎么变成了一个关于监控的讨论呢?别急,我们确实还在讨论“以终为始”,因为数字是诠释“终”的最好方式。

我们前面讨论了各种“终”,但通常靠语言定义的“终”,或多或少都会存在一些模糊的地方,也就是容易产生误解的地方。而数字却是一个明明白白的“终”。比如,测试覆盖率要求100%,即便你做到了99.9%,不达标就是不达标,没什么好说的,说破天也是不达标。

再比如,之前内容我们讲到精益创业时,提到了一个重要的反馈循环:开发(build)-测量(measure)-认知(learn)。你会发现,在这个循环中,开发(build)是可控的,认知(learn)必须是得到反馈之后才能有的。所以,这里面最需要我们回答的问题是测量(measure)。而这里的测量,最好的检验标准当然就是数字。

或许你会说,数字我们都很熟,还用讲吗?不过在我看来,你还真的未必习惯于使用数字。

熟悉而陌生的数字

从进化的角度来看,人们做事更多是依赖于直觉的。数字,是人类在非洲大草原上奔跑了许久之后才创造出来的东西。著名科普著作《从一到无穷大》的开篇有这么一个故事:

两个匈牙利贵族决定做一次数数的游戏,看谁说出的数字大。
一个贵族说:“好,那你先说吧!”
另一个绞尽脑汁想了好几分钟,说了一个数字:“3”。
现在轮到第一个贵族苦思冥想了,他想了一刻钟,然后说:“好吧,你赢啦!”

这个故事听起来有些荒诞,但一些非洲探险家证实,在某些原始部族里,不存在比3大的数词。如果问他们有几个孩子,而这个数字大于3的话,他就会回答“许多个”。

虽然我们中华民族是一个重视教育的民族,现在也都承认数学是一门重要的基础知识。但我们还是习惯性地观其大略,因为在日常生活领域里,除了买东西发工资,需要对数字斤斤计较的场合并不多。

历史的车轮在不停地滚滚向前,当今社会所面临的复杂度已经远远超过凭直觉就能把事情做好的程度。

一些人说,自己靠直觉就能把事情做好,其实这是一种误解,因为那种所谓的直觉,通常是一种洞见(Insight),洞见很大程度上依赖于一个人在一个领域长期的沉淀和积累,而这其实是某种意义上的大数据。

我们都在说,人类马上就要进入智能时代了。之所以这么说,主要是现在人工智能技术不断地向前发展着。而人工智能作为一门在50年代就已经问世的技术,直到最近几年才得到大踏步的前进,主要归功于基础设施的发展。

在人工智能领域,基于统计的方法早就在学术界提了出来,但由于当时的技术条件所限,人们的数据采集和存储能力都有限,当时的“大”数据和今天的大数据完全不是一个量级的概念。

直到进入到互联网时代,随着处理数据量的增加,基础设施在不断地拓展,进而促使人们采集更多的数据,这个正向反馈也造就了今天的大数据。

原本因为缺乏足够数据支撑,难以施展拳脚的 AI 算法,在今天一下子有了足够的表演空间,从一个边缘角色成为了舞台中心的主角。

今天谈到人工智能,人们主要会谈三件事:算法、算力和数据。算法几乎是行业共有的,而算力在云计算普及的今天也不再是稀缺资源,所以,数据几乎成了兵家必争之“物”。于是,我们看到的现象是各个公司都在努力地搜集各种数据,让数据成为自己的竞争力。所以,在大方向上,数据采集是一个行业共识。

但是,作为这个世界上最了解数据价值的一批人,我们程序员只是在努力地把数据用于不断改善别人的生活,而对于自己日常工作的改善,则思考得少之又少。

我们更习惯的讨论方式依然是靠直觉。比如:增加了这个特性可能会让用户增长,做了这个调整应该会让系统的压力变小。

在一些简单的情形下,或者说大家信息对称、知识背景相差无几的情况下,这样的讨论是很容易得到认同的。而当事情复杂到一定程度时,简单地靠感觉是很难让人相信的。

所以,在我们的工作中,经常会发生的一个现象是,一个人说,我觉得这个有作用,另一个人说,我觉得那个没有。几个“觉得”下来,双方就开始进入了隔空对话的环节,谁也无法说服谁。

如果换成用数字的方式进行讨论,效果就会更好。有一次,为了改善用户体验,我们准备进行一次主页改版。产品团队希望在主页上加上大量的内容,而开发团队则认为太多的内容会导致主页加载变慢,进而造成用户体验下降。

正当这个对话即将进入“空对空”的讨论之时,我们找到了一个测量指标:主页加载速度。只要保证主页加载速度,产品团队就可以按照自己的理解来做调整。于是,一个即将不可挽回的讨论,变成了在一定约束条件下的讨论,双方谁也不再思维发散,讨论就能继续推进了。

如果你认同了数据本身的价值,那么再结合“以终为始”的理念,我们就应该在着手做一件事之前,先来想怎么去测量。无论是在讨论产品特性,还是功能开发,“信口雌黄”是容易的,落到数字上,人们就会多想一下,这是对彼此的约束。

从数字出发

前面的内容我们都是在说应该重视测量指标,重视数字。接下来,我就分享下几个我在实际工作中运用数字的案例,让你看看习惯用数字去思考问题之后,会拓宽哪些思考的维度。

首先是基于数字进行技术决策。有一次,我们打算做一个技术改进,给系统增加一些缓存,减轻数据库的压力。大家一起设计了两个技术方案。如果查询是特定的,我们就准备简单地在某些方法上加上缓存;如果查询是五花八门的,就准备用一个中间件,使用它的查询方案。

系统现在的情况到底是什么样的呢?我们发现并不能立刻回答这个问题。于是,大家决定在系统中增加一些统计指标,让数据给我们答案。然后根据数据反映出的情况,进行具体的决策。

其次是一个准备上线的案例。当时,我们是要做一个影响力比较大的系统升级,因为这是一个系统的关键模块,上下游系统都会受到影响。

谁也不能确定哪个模块会在上线过程中出问题。于是,设计了一个全新的数据面板,将相关的几个模块的核心指标都摆在上面。而我们要做的就是在上线的同时,观察这些指标的变化。

所幸的是,这次上线影响不大,几个指标一路平稳,而大家的信心就源自这些提前准备好的指标。

再次,看一个从数字中发现问题的例子。由于各种历史原因,我们的重点指标面板上,会有几个指标表示的是类似的东西。

比如,某个模块的处理能力,一个指标是站在这个模块内部度量的,而另一个指标则是由这个模块上下游系统度量的。在大多数情况下,它们的表现是一致的。结果有一天两者突然出现了很大的差异,内部度量表现依然良好,而外部度量则出现了很大的延迟。

于是,我们开始追问为什么。一路追寻下来,我们发现,是这个模块内部需要定期将内部状态持久化下来,而在那个时间段内,这个模块就会停止从上游读取数据。所以,在内部看一切正常,而外部看则延迟较大。随后,我们找到了方案,解决了这一问题。

最后再说一个行业中的例子,据我所知,行业里的某些公司已经开始做所谓的 AIOps,也就是通过人工智能的方式,从数据中,发现更多运维的问题。无论哪种做法,都是为了从数字中发现问题,让系统更稳定。

我的一个同事有个观点非常值得玩味,他说,从数字上看,好的系统应该是“死水一潭”。

我是赞同这个观点的,因为出现波动尤其是大幅度波动,又不能给出一个合理解释的话,就说明系统存在着隐患。而让系统稳定,正是我们工作的一个重要组成部分。

回到这一讲的开头,我说每天工作中的一个重要组成部分就是看数字,其实就是在尝试着从数字的趋势中发现问题,如今团队已经习惯了“给个数字看看”这样的沟通方式,内部扯皮的机会也相应地减少了一些。

总结时刻

随着智能时代的来临,人类社会开始逐渐认识到数据的重要性。但我们这群 IT 人在通过数据为其他人服务的同时,却很少把数字化的思维带到自己的工作范围内。这也是工作中很多“空对空”对话的根源所在。

结合着“以终为始”的思考,如果我们可以在一开始,就设计好测量工作有效性的指标,那么就可以更有目的性地去工作了。

而如果我们习惯了用数字去思考,就可以在很多方面让数字帮助我们。我举了几个小例子,比如:基于数据进行技术决策、预先设定系统指标,以及发现系统中的问题等等。希望你也可以把数字思维带到你的日常工作中。

如果今天的内容你只记住一件事,那请记住:问一下自己,我的工作是不是可以用数字衡量。

最后,我想请你分享一下,你的工作中,有哪些应用数字解决问题的场景呢?欢迎在留言区写下你的想法。

感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给你的朋友。

【多种改进粒子群算法进行比较】基于启发式算法的深度神经网络卸载策略研究【边缘计算】(Matlab代码实现)内容概要:本文围绕“基于多种改进粒子群算法比较的深度神经网络卸载策略研究”展开,聚焦于边缘计算环境下的计算任务卸载优化问题。通过引入多种改进的粒子群优化(PSO)算法,并与其他启发式算法进行对比,旨在提升深度神经网络模型在资源受限边缘设备上的推理效率与系统性能。文中详细阐述了算法设计、模型构建、优化目标(如延迟、能耗、计算负载均衡)以及在Matlab平台上的代码实现过程,提供了完整的仿真验证与结果分析,展示了不同算法在卸载决策中的表现差异。; 适合人群:具备一定编程基础和优化算法知识,从事边缘计算、人工智能部署、智能优化等相关领域的科研人员及研究生;熟悉Matlab仿真工具的开发者。; 使用场景及目标:①研究边缘计算环境中深度学习模型的任务卸载机制;②对比分析多种改进粒子群算法在复杂优化问题中的性能优劣;③为实际系统中低延迟、高能效的AI推理部署提供算法选型与实现参考; 阅读建议:建议结合提供的Matlab代码进行实践操作,重点关注算法实现细节与参数设置,通过复现仿真结果深入理解不同启发式算法在卸载策略中的适用性与局限性,同时可拓展至其他智能优化算法的对比研究。
本项目深入探讨了人工智能技术在网络结构解析中的实际运用,重点研究了社交网络环境中潜在连接关系的推断问题。作为网络科学的核心研究方向之一,连接关系推断旨在通过分析现有网络构型来预判可能形成或消失的关联纽带。此项研究对于把握网络演化规律、优化推荐机制以及预判社交网络发展轨迹具有重要价值。 网络结构解析旨在探究复杂系统中各实体间相互关联的模式,其研究范畴涵盖网络构建、特征挖掘、群体划分及动态演变等多个维度。在社交网络场景中,实体代表用户个体,而实体间的关联则映射出用户间的交互行为与社会联系。 网络构型特征是解析过程中的关键要素,主要包括:连接度(节点与其他节点的关联数量)、聚集度(相邻节点间形成连接的概率)、路径距离(节点间最短连通路径)以及中介度(节点在最短路径中的出现频次)。这些特征参数能够有效揭示网络内部结构规律,为连接关系推断提供理论支撑。 在连接关系推断环节,研究重点在于如何基于网络构型特征与节点属性来预判新连接产生的可能性。当前普遍采用的智能算法包括逻辑回归、支持向量机、随机森林及神经网络等。各类算法各具特色:逻辑回归具有计算效率高的优势,但在处理复杂非线性关系时存在局限;支持向量机在小样本数据处理方面表现优异,但需要较高的运算资源;随机森林则擅长处理高维数据,并能有效评估特征重要性。 本研究通过系统对比多种智能算法的预测效能,构建了完整的模型训练、交叉验证、参数优化与性能评估流程。采用曲线下面积、精准度、查全率与调和平均数等量化指标进行综合评判,从而筛选出最适合特定社交网络环境的预测模型。 该项目通过实践演示了如何运用智能计算方法解析社交网络构型特征,并对潜在连接关系进行科学预判,同时提供了多算法性能对比的实证研究案例。对于致力于网络解析、社交网络研究及智能算法应用的专业人士而言,这项研究具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
<think>好的,我现在需要处理用户的问题:“为什么内容没有被编写或者任务未完成”。首先,我得理解用户的需求。他们可能遇到了任务无法完成的情况,想知道常见的原因和解决方法。根据任务要求,我需要调用网络搜索工具来获取相关信息,然后整合成清晰的回答,分点说明,并且最后生成相关问题。 先分析用户意图。用户询问的是任务或内容未完成的原因,可能涉及时间管理、资源不足、优先级问题等。我需要找出常见的原因,比如优先级冲突、资源限制、动力不足等。然后,每个原因需要对应的解决方法,比如优先级排序、分解任务、设定截止日期等。 接下来进行搜索。假设搜索到的资料提到常见原因包括:目标不明确、时间管理不佳、缺乏动力、外部干扰、资源不足等。解决方法可能涉及SMART原则、任务分解、时间管理技巧如番茄工作法、消除干扰环境等。 然后需要组织回答,分成多个方法或步骤,每个步骤间换行。避免使用第一人称和步骤词汇,比如“首先”、“然后”。例如,可能分为目标设定、任务分解、时间管理、环境优化、调整心态这几个部分。每个部分下给出具体建议,如使用SMART原则,分解任务到具体步骤,推荐番茄工作法,使用工具屏蔽干扰,建立奖励机制等。 同时要注意格式规范,比如数学公式和代码的格式,但这个问题可能不需要公式或代码。不过如果有相关的内容,比如时间管理中的时间分配公式,可能需要用行内公式,例如每个任务分配的时间比例。 最后生成相关问题,必须基于原回答内容,比如如何提高任务优先级、如何分解复杂任务、有效的时间管理技巧有哪些。这三个问题应该和用户的问题紧密相关,并且能引导进一步的信息获取。 检查所有要求:分点、无第一人称、换行分隔、相关问题在最后,格式正确。确保没有将引用集中在末尾,每个方法部分整合了搜索到的信息。例如,在目标设定部分提到SMART原则,任务分解提到分步骤,时间管理提到番茄工作法和四象限法,环境优化提到工具屏蔽网站,调整心态提到奖励机制和弹性调整。 现在需要将这些整合成自然流畅的回答,确保每个方法之间有换行,不使用步骤词汇,同时保持实用性。比如: “目标设定不清晰可能导致任务拖延。采用SMART原则明确具体、可衡量、可实现、相关性强且有时限的目标,例如将‘写报告’转化为‘每天完成1000字初稿,周五前提交’。” 然后每个方法依次展开,最后添加相关问题部分,使用规定的标题和格式。 总结:回答结构清晰,方法具体,符合用户需求,相关问题相关性强,格式正确。</think>任务未完成或内容缺失的常见原因及解决方案可分为以下五类: **目标设定问题** 模糊的目标易导致执行困难。采用SMART原则设定目标:$Specific$(具体)、$Measurable$(可衡量)、$Achievable$(可实现)、$Relevant$(相关性)、$Time-bound$(时限)。例如将"整理数据"改为"本周三18点前完成销售数据分类并生成图表"。 **任务复杂度管理** 庞大任务易引发畏难情绪。将任务拆解为$Task= \sum_{i=1}^{n}Subtask_i$形式,例如开发APP可分为需求文档、UI设计、功能开发等子模块,每个模块再细化到具体操作步骤。 **时间管理缺陷** 推荐结合番茄工作法与四象限法: ```text 紧急且重要 → 立即执行 重要不紧急 → 安排固定时段 紧急不重要 → 委托或快速处理 不紧急不重要 → 暂缓或删除 ``` 使用工具如ForestApp保持专注,每25分钟工作+5分钟休息循环。 **环境干扰因素** 数字干扰可通过技术手段解决: ```javascript // 使用浏览器插件屏蔽社交媒体 window.addEventListener('focus', function() { blockWebsite('twitter.com', 09:00-12:00); }); ``` 物理环境建议采用「5S管理法」:整理(Seiri)、整顿(Seiton)、清扫(Seiso)、清洁(Seiketsu)、素养(Shitsuke)。 **动力维持机制** 建立神经反馈系统:完成子任务后给予多巴胺刺激(如休息、小奖励)。长期目标可采用$Motivation = Value \times Expectancy / Impulsiveness \times Delay$公式,通过提升任务价值感、缩短反馈周期来维持动力。
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值