【CodeForces 765D】 Artsem and Saunders(数学,构造)


D. Artsem and Saunders
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Artsem has a friend Saunders from University of Chicago. Saunders presented him with the following problem.

Let [n] denote the set {1, ..., n}. We will also write f: [x] → [y] when a function f is defined in integer points 1, ..., x, and all its values are integers from 1 to y.

Now then, you are given a function f: [n] → [n]. Your task is to find a positive integer m, and two functions g: [n] → [m], h: [m] → [n], such that g(h(x)) = x for all , and h(g(x)) = f(x) for all , or determine that finding these is impossible.

Input

The first line contains an integer n (1 ≤ n ≤ 105).

The second line contains n space-separated integers — values f(1), ..., f(n) (1 ≤ f(i) ≤ n).

Output

If there is no answer, print one integer -1.

Otherwise, on the first line print the number m (1 ≤ m ≤ 106). On the second line print n numbers g(1), ..., g(n). On the third line print m numbers h(1), ..., h(m).

If there are several correct answers, you may output any of them. It is guaranteed that if a valid answer exists, then there is an answer satisfying the above restrictions.

Examples
Input
3
1 2 3
Output
3
1 2 3
1 2 3
Input
3
2 2 2
Output
1
1 1 1
2
Input
2
2 1
Output
-1

题目大意:定义两个函数 g(h(x)) = x 和 h(g(x)) = f(x) 给出f(x) 构造 h(x) 和 g(x) 使其满足条件
思路:(我居然能写出D题,莫名兴奋)。g(x) 有 n 个元素, h(x) 有 m 个元素,根据函数关系,可以推出表达式 g(x) = g( f(x) ) ,此式表达 g(x)==g(a),其中a==f(x),  设 g(1)=1,根据表达式从 1 ~n 构造出 g(x) ,构造过程中如果出现与之前矛盾的情况则输出 -1 。第二步根据  h(g(x)) = f(x) 从 1~n 推出 h(x) 的表达式,此过程中如果出现矛盾则输出 -1,完毕。

#include <bits/stdc++.h>
#define manx 100005
using namespace std;
int main()
{
    int f[manx]={0},h[manx]={0},g[manx]={0},n,m;

    scanf("%d",&n);
    for (int i=1; i<=n; i++) scanf("%d",&f[i]);
    int cot=1;
    for (int i=1; i<=n; i++){
        if (g[f[i]]) g[i]=g[f[i]];  //g[f[i]]在g[i]之前
        else if (g[i]==0) g[i]=cot++;
        if(!g[f[i]]) g[f[i]]=g[i]; //g[f[i]]在g[i]之后
        else if (g[f[i]]!=g[i]){
            printf("-1\n");
            return 0;
        }
    }
    m=0;
    for (int i=1; i<=n; i++){
        if(!h[g[i]]) {
            h[g[i]]=f[i];
            m++;
        }
        else if(h[g[i]]!=f[i]){
            printf("-1\n");
            return 0;
        }
    }
    printf("%d\n",m);
    for (int i=1; i<=n; i++)
        i==n ? printf("%d\n",g[i]) : printf("%d ",g[i]);
    for (int i=1; i<=m; i++)
        i==m ? printf("%d\n",h[i]) : printf("%d ",h[i]);
    return 0;
}


### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值