系列文章目录
前言
时间序列数据的分解,一般分为趋势项,季节变化项和随机波动项。可以基于加法或者乘法模型。季节变化呈现出周期变化,因此也叫季节效应(周期)。
一、数据分解步骤
(1)估计时间序列的长期趋势,一种是通过数据平滑方式进行估计;一种是通过模拟回归方程进行估计;
(2)去掉时间序列数据的长期趋势。 加法模型则减去,乘法模型即除去;
(3)去掉长期趋势的时间序列数据,估计时间序列的季节变化;
(4)剩下的即为随机波动项;
二、使用步骤
1.数据分解方法
import os
#移动平均法
os.chdir("D:/Pythonmatlab学习资料/")
#改变工作目录
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
import numpy as np
from statsmodels.tsa.seasonal import seasonal_decompose
traveller_df = pd.read_csv("NZTravellersDestination.csv", usecols=['Date','China'], parse_dates=['Date'], index_col='Date')
deco_muti = seasonal_decompose(traveller_df, model='mutiplicative', extrapolate_trend='freq')
new,(ax1,ax2,ax3,ax4) = plt.subplots(4, 1, sharex=True, figsize=(12,8), dpi=150)
ax1.plot(deco_muti.observed, color='r')
ax1.set_ylabel(ylabel="Observed", fontsize=15)
ax2.plot(deco_muti.trend, color='b')
ax2.set_ylabel(ylabel="Trend", fontsize=15)
ax3.plot(deco_muti.seasonal, color='g')
ax3.set_ylabel(ylabel="Seasonal", fontsize=15)
ax4.plot(deco_muti.resid, color='b')
ax4.set_ylabel(ylabel="Resid", fontsize=15)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)
plt.tight_layout(); plt.savefig(fname='fig/4_1.png')
deco_value = pd.concat([deco_muti.trend, deco_muti.seasonal, deco_muti.resid, deco_muti.observed], axis=1)
deco_value.columns = ['trend', 'season', 'resid', 'actual_values']
deco_value.head()
##%
2.分解项计算方法
import statsmodels.formula.api as smf
#表示线性拟合计算趋势
df = np.loadtxt("elec_prod.txt")
t = np.arange(1,397)
df_t = np.vstack((df,t)).swapaxes(0,1).astype(int)
model_data = pd.DataFrame(df_t,columns=['df','t'])
results_f = smf.ols('df~t',data=model_data).fit()
print(results_f.summary().tables[1])
print('std = ',np.std(results_f.resid))
fig = plt.figure(figsize=(12,4), dpi=150)
ax = fig.add_subplot(111)
ax.plot(model_data, linestyle="-", color='red')</