44、高斯消元法及其在FORTRAN中的实现

高斯消元法及其在FORTRAN中的实现

1 高斯消元法简介

高斯消元法(Gaussian Elimination)是一种经典的线性代数算法,广泛应用于求解线性方程组。它通过一系列的初等行变换,将线性方程组转化为上三角矩阵的形式,从而简化求解过程。本文将详细介绍高斯消元法的基本原理、步骤,并通过FORTRAN语言实现该算法。

1.1 什么是线性方程组?

线性方程组是由多个线性方程组成的系统,每个方程都涉及未知数的一次幂。例如,考虑以下线性方程组:

[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \
\vdots \
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
\end{cases}
]

其中,(a_{ij}) 和 (b_i) 是已知常数,(x_j) 是未知数。

1.2 高斯消元法的作用

高斯消元法的目标是将上述线性方程组转化为上三角矩阵的形式,使得求解过程更加直观和简便。具体步骤包括前向消元和后向代入。

2 高斯消元法的步骤

高斯消元法分为两个主要阶段:前向消元和后向代入。

2.1 前向消元

前向消元的目的是通过一系列的行变换,将增广矩阵转换为上三角矩阵。具体步骤如下:

  1. <
【顶刊TAC复现】事件触发模型参考自适应控制(ETC+MRAC):针对非线性参数不确定性线性部分时变连续系统研究(Matlab代码实现)内容概要:本文档介绍了“事件触发模型参考自适应控制(ETC+MRAC)”的研究与Matlab代码实现,聚焦于存在非线性参数不确定性且具有时变线性部分的连续系统。该研究复现了顶刊IEEE Transactions on Automatic Control(TAC)的相关成果,重点在于通过事件触发机制减少控制器更新频率,提升系统资源利用效率,同时结合模型参考自适应控制策略增强系统对参数不确定性和外部扰动的鲁棒性。文档还展示了大量相关科研方向的技术服务内容,涵盖智能优化算法、机器学习、路径规划、电力系统、信号处理等多个领域,并提供了Matlab仿真辅导服务及相关资源下载链接。; 适合人群:具备自动控制理论基础、非线性系统分析背景以及Matlab编程能力的研究生、博士生及科研人员,尤其适合从事控制理论与工程应用研究的专业人士。; 使用场景及目标:① 复现顶刊TAC关于ETC+MRAC的先进控制方法,用于非线性时变系统的稳定性与性能优化研究;② 学习事件触发机制在节约通信与计算资源方面的优势;③ 掌握模型参考自适应控制的设计思路及其在不确定系统中的应用;④ 借助提供的丰富案例与代码资源开展科研项目、论文撰写或算法验证。; 阅读建议:建议读者结合控制理论基础知识,重点理事件触发条件的设计原理与自适应律的构建过程,运行并调试所提供的Matlab代码以加深对算法实现细节的理,同时可参考文中列举的其他研究方向拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值