Faster RCNN训练出现问题:generated_database_->Add(encoded_file_descriptor, size)

本文记录了使用Caffe框架实现Faster R-CNN时遇到的错误信息及解决方案,包括忽略某些源层及复制特定源层的过程,并针对特定错误提供了重启MATLAB的解决办法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

I1112 18:49:04.704902 18730 net.cpp:743] Ignoring source layer relu3
I1112 18:49:04.704903 18730 net.cpp:743] Ignoring source layer conv4
I1112 18:49:04.704905 18730 net.cpp:743] Ignoring source layer relu4
I1112 18:49:04.704907 18730 net.cpp:743] Ignoring source layer conv5
I1112 18:49:04.704908 18730 net.cpp:743] Ignoring source layer relu5
I1112 18:49:04.704910 18730 net.cpp:746] Copying source layer roi_pool5
I1112 18:49:04.704917 18730 net.cpp:746] Copying source layer fc6
I1112 18:49:04.726521 18730 net.cpp:746] Copying source layer relu6
I1112 18:49:04.726529 18730 net.cpp:746] Copying source layer drop6
I1112 18:49:04.726531 18730 net.cpp:746] Copying source layer fc7
I1112 18:49:04.736151 18730 net.cpp:746] Copying source layer relu7
I1112 18:49:04.736160 18730 net.cpp:746] Copying source layer drop7
I1112 18:49:04.736176 18730 net.cpp:746] Copying source layer fc7_drop7_0_split
I1112 18:49:04.736178 18730 net.cpp:746] Copying source layer cls_score
I1112 18:49:04.736222 18730 net.cpp:743] Ignoring source layer cls_score_cls_score_0_split
I1112 18:49:04.736225 18730 net.cpp:746] Copying source layer bbox_pred
I1112 18:49:04.736385 18730 net.cpp:743] Ignoring source layer loss
I1112 18:49:04.736389 18730 net.cpp:743] Ignoring source layer accuarcy
I1112 18:49:04.736392 18730 net.cpp:743] Ignoring source layer loss_bbox
[libprotobuf ERROR google/protobuf/descriptor_database.cc:57] File already exists in database: caffe.proto
[libprotobuf FATAL google/protobuf/descriptor.cc:1018] CHECK failed: generated_database_->Add(encoded_file_descriptor, size): 


%% -------------------- CONFIG --------------------
opts.caffe_version          = 'caffe_faster_rcnn';
opts.gpu_id                 = auto_select_gpu;
active_caffe_mex(opts.gpu_id, opts.caffe_version);

解决方法:

重启matlab



转载请注明:http://blog.youkuaiyun.com/forest_world

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值