MongoDB 分片

分片技术是为了满足MongoDB数据量快速增长的需求。可以通过在多台机器上分割数据,使得数据库系统能存储和处理更多的数据。

为什么使用分片

  • 复制所有的写入操作到主节点
  • 延迟的敏感数据会在主节点查询
  • 单个副本集限制在12个节点
  • 当请求量巨大时会出现内存不足。
  • 本地磁盘不足
  • 垂直扩展价格昂贵

MongoDB分片

下图展示了在MongoDB中使用分片集群结构分布:


  • Shard:

    用于存储实际的数据块,实际生产环境中一个shard server角色可由几台机器组个一个relica set承担,防止主机单点故障

  • Config Server:

    mongod实例,存储了整个 ClusterMetadata,其中包括 chunk信息。

  • Query Routers:

    前端路由,客户端由此接入,且让整个集群看上去像单一数据库,前端应用可以透明使用。

分片实例

分片结构端口分布如下:

Shard Server 127020
Shard Server 227021
Shard Server 327022
Shard Server 427023
Config Server 27100
Route Process40000

步骤一:启动Shard Server

[root@100 /]# mkdir -p /www/mongoDB/shard/s0
[root@100 /]# mkdir -p /www/mongoDB/shard/s1
[root@100 /]# mkdir -p /www/mongoDB/shard/s2
[root@100 /]# mkdir -p /www/mongoDB/shard/s3
[root@100 /]# mkdir -p /www/mongoDB/shard/log
[root@100 /]# /usr/local/mongoDB/bin/mongod --port 27020 --dbpath=/www/mongoDB/shard/s0 --logpath=/www/mongoDB/shard/log/s0.log --logappend --fork
....
[root@100 /]# /usr/local/mongoDB/bin/mongod --port 27023 --dbpath=/www/mongoDB/shard/s3 --logpath=/www/mongoDB/shard/log/s3.log --logappend --fork

步骤二: 启动Config Server

[root@100 /]# mkdir -p /www/mongoDB/shard/config
[root@100 /]# /usr/local/mongoDB/bin/mongod --port 27100 --dbpath=/www/mongoDB/shard/config --logpath=/www/mongoDB/shard/log/config.log --logappend --fork

注意:这里我们完全可以像启动普通mongodb服务一样启动,不需要添加—shardsvr和configsvr参数。因为这两个参数的作用就是改变启动端口的,所以我们自行指定了端口就可以。

步骤三: 启动Route Process

/usr/local/mongoDB/bin/mongos --port 40000 --configdb localhost:27100 --fork --logpath=/www/mongoDB/shard/log/route.log --chunkSize 500

mongos启动参数中,chunkSize这一项是用来指定chunk的大小的,单位是MB,默认大小为200MB.

步骤四: 配置Sharding

接下来,我们使用MongoDB Shell登录到mongos,添加Shard节点

[root@100 shard]# /usr/local/mongoDB/bin/mongo admin --port 40000
MongoDB shell version: 2.0.7
connecting to: 127.0.0.1:40000/admin
mongos> db.runCommand({ addshard:"localhost:27020" })
{ "shardAdded" : "shard0000", "ok" : 1 }
......
mongos> db.runCommand({ addshard:"localhost:27029" })
{ "shardAdded" : "shard0009", "ok" : 1 }
mongos> db.runCommand({ enablesharding:"test" }) #设置分片存储的数据库
{ "ok" : 1 }
mongos> db.runCommand({ shardcollection: "test.log", key: { id:1,time:1}})
{ "collectionsharded" : "test.log", "ok" : 1 }

步骤五: 程序代码内无需太大更改,直接按照连接普通的mongo数据库那样,将数据库连接接入接口40000






内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值