计算没有被盖住的木棍有多少个,判断线段是否相交就行了。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
const double eps = 1e-10;
struct Point
{
double x, y;
Point(double x=0, double y=0):x(x),y(y){ }
};
struct Line
{
Point a, b;
int i;
};
typedef Point Vector;
Vector operator + (const Vector& A, const Vector& B)
{
return Vector(A.x+B.x, A.y+B.y);
}
Vector operator - (const Point& A, const Point& B)
{
return Vector(A.x-B.x, A.y-B.y);
}
Vector operator * (const Vector& A, double p)
{
return Vector(A.x*p, A.y*p);
}
bool operator < (const Point& a, const Point& b)
{
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
int dcmp(double x)
{
if(fabs(x) < eps)
return 0;
else
return x < 0 ? -1 : 1;
}
bool operator == (const Point& a, const Point &b)
{
return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;
}
double Dot(const Vector& A, const Vector& B)
{
return A.x*B.x + A.y*B.y;
}
double Length(const Vector& A)
{
return sqrt(Dot(A, A));
}
double Angle(const Vector& A, const Vector& B)
{
return acos(Dot(A, B) / Length(A) / Length(B));
}
double Cross(const Vector& A, const Vector& B)
{
return A.x*B.y - A.y*B.x;
}
double Area2(Point A, Point B, Point C)
{
return Cross(B - A, C - A);
}
bool SegmentProperIntersection(const Point& a1, const Point& a2, const Point& b1, const Point& b2)
{
double c1 = Cross(a2-a1,b1-a1), c2 = Cross(a2-a1,b2-a1),
c3 = Cross(b2-b1,a1-b1), c4=Cross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}
bool OnSegment(const Point& p, const Point& a1, const Point& a2)
{
return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0;
}
//求两直线交点,先确保两直线有唯一交点,当且仅当Cross(v, w)非0
Point GetLineIntersection(const Point& P, const Point& v, const Point& Q, const Point& w)
{
Vector u = P-Q;
double t = Cross(w, u) / Cross(v, w);
return P+v*t;
}
Vector Rotate(const Vector& A, double rad)
{
return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
}
vector <Line> v1, v2;
int main()
{
int n;
while(scanf("%d", &n), n)
{
Line line;
double x1, y1, x2, y2;
for(int i = 0; i < n; i++)
{
v1.clear();
scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2);
line.a.x = x1, line.a.y = y1, line.b.x = x2, line.b.y = y2;
line.i = i + 1;
int _size = v2.size();
for(int j = 0; j < _size; j++)
if(!SegmentProperIntersection(line.a, line.b, v2[j].a, v2[j].b))
v1.push_back(v2[j]);
v1.push_back(line);
v2 = v1;
}
printf("Top sticks: ");
int _size = v2.size();
for(int j = 0; j < _size - 1; j++)
printf("%d, ", v2[j].i);
printf("%d.\n", v2[_size - 1].i);
v2.clear();
v1.clear();
}
return 0;
}
本文详细介绍了POJ2653 Pick-upsticks问题的解决思路,通过判断线段是否相交来计算未被覆盖的木棍数量。包括算法原理、代码实现与实例演示。
489

被折叠的 条评论
为什么被折叠?



