最长公共子序列(LCS)

首先要明确的是子序列的概念,注意啦,子序列不等于子串。子序列是一个字符串S去掉零个或者多个字符后所剩下的字符串就叫做子序列。
  最长公共子序列的意思就是寻找两个给定字符串的的子序列,该子序列在两个字符串中以相同的次序出现,但是不一定是连续的。(连续的那是子串)
   例如序列X=ABCBDAB,Y=BDCABA。序列BCA是X和Y的一个公共子序列,但是不是X和Y的最长公共子序列,子序列BCBA是X和Y的一个LCS,序列BDAB也是。
   最简单想到的寻找LCS的一种方法是枚举X所有的子序列,然后逐一检查是否是Y的子序列,并随时记录发现的最长子序列。假设X有m个元素,则X有2^m个子序列,指数级的时间,对长序列不实际。
   其实最长公共子序列是动态规划(DP)的典型例子。

设X=1,x2,…,xm>和Y=1,y2,…,yn>为两个字符串,LCS(X,Y)表示X和Y的一个最长公共子序列,可以看出

  1. 如果xm=yn,则LCS ( X,Y ) =xm + LCS( Xm-1,Yn-1 )。
  2. 如果xm!=yn,则LCS( X,Y )= max{ LCS( Xm-1, Y ),LCS ( X, Yn-1 )}

LCS问题也具有重叠子问题性质:为找出X和Y的一个LCS,可能需要找X和Yn-1的一个LCS以及Xm-1和Y的一个LCS。但这两个子问题都包含着找Xm-1和Yn-1的一个LCS,等等.

 

DP最终处理的还是数值(极值做最优解),找到了最优值,就找到了最优方案;为了找到最长的LCS,我们定义dp[i][j]记录序列LCS的长度,合法状态的初始值为当序列X的长度为0或Y的长度为0,公共子序列LCS长度为0,即dp[i][j]=0,所以用i和j分别表示序列X的长度和序列Y的长度,状态转移方程为

  1. dp[i][j] = 0  如果i=0或j=0
  2. dp[i][j] = dp[i-1][j-1] + 1 如果X[i-1] = Y[i-1] (X[i-1]就是X数组中的第i个)
  3. dp[i][j] = max{ dp[i-1][j], dp[i][j-1]}  如果X[i-1] != Y[i-1]
#include <iostream>
using namespace std;
 
/* LCS
 * 设序列长度都不超过20
*/
 
int dp[21][21]; /* 存储LCS长度, 下标i,j表示序列X,Y长度 */
char X[21];
char Y[21];
int i, j;
 
void main()
{
    cin.getline(X,20);
    cin.getline(Y,20);
 
    int xlen = strlen(X);
    int ylen = strlen(Y);
 
    /* dp[0-xlen][0] & dp[0][0-ylen] 都已初始化0 */
    for(i = 1; i <= xlen; ++i)
    {
        for(j = 1; j <= ylen; ++j)
        {
            if(X[i-1] == Y[j-1])
            {
                dp[i][j] = dp[i-1][j-1] + 1;
            }else if(dp[i][j-1] > dp[i-1][j])
            {
                dp[i][j] = dp[i][j-1];
            }else
            {
                dp[i][j] = dp[i-1][j];
            }
        }
    }
    printf("len of LCS is: %d\n", dp[xlen][ylen]);
 
    /* 输出LCS 本来是逆序打印的,可以写一递归函数完成正序打印
       这里采用的方法是将Y作为临时存储LCS的数组,最后输出Y
    */

   
    i = xlen;
    j = ylen;
    int k = dp[i][j];
    char lcs[21] = {'\0'};
    while(i && j)
    {
        if(X[i-1] == Y[j-1] && dp[i][j] == dp[i-1][j-1] + 1)
        {
            lcs[--k] = X[i-1];
            --i; --j;
        }else if(X[i-1] != Y[j-1] && dp[i-1][j] > dp[i][j-1])
        {
            --i;
        }else
        {
            --j;
        }
    }
    printf("%s\n",lcs);
}

例题:UVa 111
转自:http://blog.163.com/zhaohai_1988/blog/static/2095100852012792947765/
内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
根据原作 https://pan.quark.cn/s/23d6270309e5 的源码改编 湖北省黄石市2021年中考数学试卷所包含的知识点广泛涉及了中学数学的基础领域,涵盖了实数、科学记数法、分式方程、几何体的三视图、立体几何、概率统计以及代数方程等多个方面。 接下来将对每道试题所关联的知识点进行深入剖析:1. 实数与倒数的定义:该题目旨在检验学生对倒数概念的掌握程度,即一个数a的倒数表达为1/a,因此-7的倒数可表示为-1/7。 2. 科学记数法的运用:科学记数法是一种表示极大或极小数字的方法,其形式为a×10^n,其中1≤|a|<10,n为整数。 此题要求学生运用科学记数法表示一个天文单位的距离,将1.4960亿千米转换为1.4960×10^8千米。 3. 分式方程的求解方法:考察学生解决包含分母的方程的能力,题目要求找出满足方程3/(2x-1)=1的x值,需通过消除分母的方式转化为整式方程进行解答。 4. 三视图的辨认:该题目测试学生对于几何体三视图(主视图、左视图、俯视图)的认识,需要识别出具有两个相同视图而另一个不同的几何体。 5. 立体几何与表面积的计算:题目要求学生计算由直角三角形旋转形成的圆锥的表面积,要求学生对圆锥的底面积和侧面积公式有所了解并加以运用。 6. 统计学的基础概念:题目涉及众数、平均数、极差和中位数的定义,要求学生根据提供的数据信息选择恰当的统计量。 7. 方程的整数解求解:考察学生在实际问题中进行数学建模的能力,通过建立方程来计算在特定条件下帐篷的搭建方案数量。 8. 三角学的实际应用:题目通过在直角三角形中运用三角函数来求解特定线段的长度。 利用正弦定理求解AD的长度是解答该问题的关键。 9. 几何变换的应用:题目要求学生运用三角板的旋转来求解特定点的...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值