LeetCode(29)Divide Two Integers

本文探讨了如何在不使用乘除取模运算符的情况下,通过位运算和逻辑运算实现两个int类型整数的相除,并解决了溢出问题。

题目

Divide two integers without using multiplication, division and mod operator.

If it is overflow, return MAX_INT.

分析

题目要求不用 * / %三种运算符的条件下,求得两个int类型整数的商。

方法一:

很明显的,我们可以用求和累计的方法,求得商,但是该方法测试会出现TLE;参考博客提出解决办法:每次将被除数增加1倍,同时将count也增加一倍,如果超过了被除数,那么用被除数减去当前和再继续本操作,但是我测试结果依然是TLE。所以这道题的目的在于考察逻辑运算。

方法二:

该方法来源于参考博客但是该实现忽略了结果溢出的问题,需要加上结果是否溢出判断。

TLE(方法一)代码

//方法一,翻倍累和  结果是:Time Limit Exceeded
class Solution {
public:
    int divide(int dividend, int divisor) {

        //如果被除数或者除数有一者为0 或者绝对值除数大于被除数则返回0
        if (dividend == 0 || divisor == 0 || abs(divisor) > abs(dividend))
            return 0;

        int sign = ((dividend > 0 && divisor > 0) || (dividend < 0 && divisor < 0)) ? 1 : -1;

        long long Dividend = abs(dividend), Divisor = abs(divisor);

        long long sum = 0;
        int count = 0, ret = 0;

        while (Divisor <= Dividend)
        {
            count = 1;
            sum = Divisor;
            while ((sum + sum) < Dividend)
            {
                sum += sum;
                count += count;
            }
            Dividend -= sum;
            ret += count;
        }

        if (sign == -1)
            return 0 - ret;
        else
            return ret;
    }
};

AC代码

//方法二:位运算
class Solution {
public:
    int divide(int dividend, int divisor) {

        //如果被除数或者除数有一者为0 或者绝对值除数大于被除数则返回0
        if (dividend == 0 || divisor == 0)
            return 0;


        // without using * / mod
        // using add
        auto sign = [=](long long x) {
            return x < 0 ? -1 : 1;
        };

        int d1 = sign(dividend);
        int d2 = sign(divisor);

        long long n1 = abs(static_cast<long long>(dividend));
        long long n2 = abs(static_cast<long long>(divisor));

        long long ans = 0;

        while (n1 >= n2) {
            long long base = n2;
            for (int i = 0; n1 >= base; ++i) {
                n1 -= base;
                base <<= 1;
                ans += 1LL << i;
            }
        }
        //如果转换为int类型,结果溢出,返回INT_MAX ,int类型表示范围[-2147483648 , 2147483648)
        if (ans > INT_MAX && d1 == d2)
            return INT_MAX;

        int res = static_cast<int>(ans);
        if (d1 != d2) 
            return -res;
        else 
            return res;
    }
};

GitHub测试程序源码

<think>嗯,用户让我介绍一下LeetCode的第29题,也就是“两数相除”。首先,我得先回忆一下这道题的具体内容。题目是要求不用乘法、除法和取模运算,实现两个整数的除法。对吧?那应该是在考察位运算或者加减法的巧妙应用。 接下来,用户可能想知道如何解决这个问题,以及需要注意的边界条件。比如,处理溢出情况,当被除数是最小负数,除数是-1的时候,结果会溢出,应该返回最大整数值。此外,所有数都要转成正数来处理,但原来的符号要记录下来,最后再调整结果的正负。 然后,我需要考虑如何用加减法或者位运算来模拟除法。通常,这可以通过不断减去除数的倍数来加速计算,比如每次将除数左移一位(相当于乘以2),直到不能再减为止。这样可以减少循环次数,提高效率。 还要注意,处理负数的时候,直接转成负数可能更好,因为负数的范围比正数大,比如-2^31转成正数会溢出。所以,可能应该将被除数和除数都转为负数来处理,这样避免溢出问题。 然后,具体的实现步骤可能包括:处理符号,转成负数,然后循环减去除数的倍数,同时记录累加的结果。比如,当被除数是-10,除数是-3的时候,初始余量是-10,除数是-3。第一次比较余量是否小于等于除数(这里都是负数,所以-10 <= -3),然后尝试减去除数的倍数,比如每次翻倍。 然后,用户可能需要具体的代码示例。这时候,我应该提供一个正确且高效的解决方案,用Java或者其他常用语言。比如,使用循环,每次将除数的值翻倍,直到超过被除数的当前余量,然后累加对应的商值。 最后,需要测试一些边界情况,比如被除数是-2147483648,除数是-1,这时候结果应该是2147483647,因为超出了整数最大值。另外,处理除数为1或-1的情况时,也需要快速返回结果,避免不必要的循环。 总结一下,解决这道题的关键在于处理符号转换,避免溢出,以及用位运算或倍增法来高效地计算结果。同时,需要注意各种边界条件,确保代码的鲁棒性。</think>LeetCode29题“两数相除”(Divide Two Integers)要求在不使用乘法、除法和取模运算的情况下,实现两个整数的除法运算。以下是逐步分析和解决方案: --- ### 问题描述 **目标**:计算整数除法 $dividend / divisor$,结果截断为整数(仅保留整数部分)。 **限制条件**: 1. 只能使用 **加减法** 和 **位运算**。 2. 假设运算结果在32位有符号整数范围内(即 $[-2^{31}, 2^{31}-1]$)。若结果溢出,返回 $2^{31}-1$。 --- ### 关键思路 #### 1. 处理符号 记录结果的符号(正或负),将被除数和除数统一转换为**负数**处理(避免正数溢出,如 $-2^{31}$ 转为正数会越界)。 #### 2. 倍增法加速 通过**指数级扩大除数倍数**(即每次翻倍),减少减法次数,优化时间复杂度至 $O(\log n)$。 #### 3. 边界条件 - 当 $dividend = -2^{31}$ 且 $divisor = -1$ 时,结果 $2^{31}$ 会溢出,需返回 $2^{31}-1$。 - 若除数为 $1$ 或 $-1$,可直接返回被除数或相反数。 --- ### 算法步骤 1. **符号处理**:根据 $dividend$ 和 $divisor$ 的符号确定最终结果的符号。 2. **转换负数**:将 $dividend$ 和 $divisor$ 转为负数。 3. **倍增法计算商**: - 每次尝试减去除数的最大倍数(即 $divisor \times 2^k$)。 - 通过左移运算(`<<`)快速计算倍数。 4. **处理溢出**:对结果进行越界检查。 --- ### 代码实现(Java) ```java class Solution { public int divide(int dividend, int divisor) { // 处理溢出情况 if (dividend == Integer.MIN_VALUE && divisor == -1) { return Integer.MAX_VALUE; } // 确定结果符号 int sign = (dividend > 0) ^ (divisor > 0) ? -1 : 1; // 转换为负数处理(避免溢出) dividend = dividend > 0 ? -dividend : dividend; divisor = divisor > 0 ? -divisor : divisor; int result = 0; while (dividend <= divisor) { int value = divisor; int quotient = 1; // 倍增法加速:每次尝试减去除数的最大倍数(value >= -2^30,避免越界) while (value >= (Integer.MIN_VALUE >> 1) && dividend <= (value << 1)) { value <<= 1; quotient <<= 1; } dividend -= value; result += quotient; } return sign == 1 ? result : -result; } } ``` --- ### 复杂度分析 - **时间复杂度**:$O(\log n)$,每次循环将问题规模减半。 - **空间复杂度**:$O(1)$,仅使用常数级额外空间。 --- ### 示例测试 1. **输入**:`dividend = 10`, `divisor = 3` **输出**:`3` **解释**:$10/3 = 3.333$,截断后为 $3$。 2. **输入**:`dividend = -2147483648`, `divisor = -1` **输出**:`2147483647` **解释**:结果溢出,返回最大值。 --- 通过符号处理、倍增法和边界条件控制,此方法能高效解决两数相除问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值