图像分类与目标检测:深度学习模型解析
1. 图像分类基础
在图像分类领域,我们可以使用OpenCV DNN结合MobileNet架构进行图像分类。以下是相关代码示例:
# Import necessary libraries
import os
import numpy as np
import cv2
# File paths to the MobileNetV2 model weights and class names
imagenet_classes_filepath = "../weights/7/ILSVRC2012.txt"
mobilenetv2_weights_filepath = "../weights/7/mobilenet/mobilenetv2.pb"
# Shape of the input image expected by the MobileNetV2 model
mobilenetv2_shape = (224, 224)
# Function to decode and format the predicted labels
def decode_predictions(predictions, class_names, top=5):
results = []
top_indices = predictions[0].argsort()[-top:][::-1]
for i in top_indices:
result = class_names[i] + ": " + str(predictions[0][i])
results.
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



