前言:
{
在看到了在网络中应用不同学习率的论文[1]后,我就想尝试一下这种多学习率的方法。
}
正文:
{
我在谷歌上搜索了一下,没搜到直接的代码,但发现了[2]。之后自己写了段代码,见代码1。
#代码1
def multi_learning_rate_optimizor(learning_rate_mapping, tf_optimizor):
"""This fucntion is to replace an original tf optimizor.
learning_rate_mapping is a list [[a front name part of variables 1, learning rate 1]
[a front name part of variables 2, learning rate 2]
...]
tf_optimizor is the function of the original tf optimizor"""
var_list = []
total_var_list = []
opt = []
grads = []
tran_op_list = []
trainable_variables = tf.trainable_variables().copy()
total_var_list = tf.trainable_variables().copy()
learning_rate_for_other &#