import tensorflow as tf
import numpy as np
#W = tf.Variable([[1,2,3],[3,4,5]], dtype = tf.float32, name='weights')
#b = tf.Variable([[1,2,3]], dtype = tf.float32, name='biases')
#init = tf.global_variables_initializer()
#saver = tf.train.Saver()
#with tf.Session() as sess:
# sess.run(init)
# save_path = saver.save(sess,"my_net/save_net.ckpt")
# print("Save to path:", save_path)
#restore variables
#redefine the same shape and same type for your variables
W = tf.Variable(np.arange(6).reshape((2,3)),dtype = tf.float32, name='weights')
b = tf.Variable(np.arange(3).reshape((1,3)),dtype = tf.float32, name='biases')
#not need init step
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "my_net/save_net.ckpt")
print("weights:", sess.run(W))
print("biases:", sess.run(b))
import numpy as np
#W = tf.Variable([[1,2,3],[3,4,5]], dtype = tf.float32, name='weights')
#b = tf.Variable([[1,2,3]], dtype = tf.float32, name='biases')
#init = tf.global_variables_initializer()
#saver = tf.train.Saver()
#with tf.Session() as sess:
# sess.run(init)
# save_path = saver.save(sess,"my_net/save_net.ckpt")
# print("Save to path:", save_path)
#restore variables
#redefine the same shape and same type for your variables
W = tf.Variable(np.arange(6).reshape((2,3)),dtype = tf.float32, name='weights')
b = tf.Variable(np.arange(3).reshape((1,3)),dtype = tf.float32, name='biases')
#not need init step
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, "my_net/save_net.ckpt")
print("weights:", sess.run(W))
print("biases:", sess.run(b))
本文介绍了如何使用TensorFlow保存和恢复模型中的变量。首先通过初始化变量并保存到指定路径,然后重新定义相同形状和类型的变量,并从之前保存的路径中恢复这些变量的值。

1万+

被折叠的 条评论
为什么被折叠?



