Time travel HDU - 4418


Agent K is one of the greatest agents in a secret organization called Men in Black. Once he needs to finish a mission by traveling through time with the Time machine. The Time machine can take agent K to some point (0 to n-1) on the timeline and when he gets to the end of the time line he will come back (For example, there are 4 time points, agent K will go in this way 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, ...). But when agent K gets into the Time machine he finds it has broken, which make the Time machine can't stop (Damn it!). Fortunately, the time machine may get recovery and stop for a few minutes when agent K arrives at a time point, if the time point he just arrive is his destination, he'll go and finish his mission, or the Time machine will break again. The Time machine has probability Pk% to recover after passing k time points and k can be no more than M. We guarantee the sum of Pk is 100 (Sum(Pk) (1 <= k <= M)==100). Now we know agent K will appear at the point X(D is the direction of the Time machine: 0 represents going from the start of the timeline to the end, on the contrary 1 represents going from the end. If x is the start or the end point of the time line D will be -1. Agent K want to know the expectation of the amount of the time point he need to pass before he arrive at the point Y to finish his mission. 
If finishing his mission is impossible output "Impossible !" (no quotes )instead. 
Input
There is an integer T (T <= 20) indicating the cases you have to solve. The first line of each test case are five integers N, M, Y, X .D (0< N,M <= 100, 0 <=X ,Y < 100 ). The following M non-negative integers represent Pk in percentile. 
Output
For each possible scenario, output a floating number with 2 digits after decimal point 
If finishing his mission is impossible output one line "Impossible !" 
(no quotes )instead. 
Sample Input
2
4 2 0 1 0
50 50
4 1 0 2 1
100
Sample Output
8.14
2.00


学习了别人的思想才弄出来:
http://blog.youkuaiyun.com/sr_19930829/article/details/38959149 上面讲了很详细
题解:有几处细节要考虑
	1.x=y时,直接出答案
	2.构建矩阵时考虑到E[y]或E[n-y]=0,然后该行的除mat[y][y]或mat[n-y][n-y]的所有系数都记为0,用高斯消元自然解出来为0,不用想其他的。
	3.对于根本走不到的点用和2.相同的做法,因为在其他方程中该元素不占用地位,相当等于0.

#include"stdio.h"
#include"cstdio"
#include"string.h"
#include"algorithm"
#include"queue"
#include"math.h"
using namespace std;
const int max_n=300;
double mat[max_n][max_n];
double P[max_n];
bool used[max_n];
int n,m,y,x,d;
int bfs()
{
	fill(used,used+max_n-1,false);
	used[x]=true;
	queue <int> q;
	q.push(x);
	while(!q.empty())
	{
		int pos=q.front();
		q.pop();
		for(int i=1;i<=m;i++)
		{
			if(P[i])
			{
				int poss=(pos+i)%n;
				if(!used[poss])
				{
					q.push(poss);
					used[poss]=true;
				}
			}
		}
	}
	if(used[y]||used[(n-y)]) return 1;
	return 0;
}
void creat()
{
	double ans=0;
	for(int i=1;i<=m;i++)
	ans+=P[i]*i;
	for(int i=0;i<n;i++)
	{
		mat[i][i]=1;
		if(!used[i]) continue ;
		if(i==y||i==(n-y)%n)
		{
			mat[i][n]=0;
			continue ;
		}
		for(int j=i+1;j<=i+m;j++)
		mat[i][j%n]-=P[j-i];
		mat[i][n]=ans;
	}
}
void swaprow(int x1,int x2)
{
	for(int i=0;i<=n;i++)
	swap(mat[x1][i],mat[x2][i]);
}
int SelectCol()
{
	for(int j=0;j<n;j++)
	{
		int maxx=j;
		for(int i=j;i<n;i++)
		{
			if(fabs(mat[i][j])>fabs(mat[maxx][j]))
			maxx=i;
		}
		if(j!=maxx)
		swaprow(j,maxx);
		for(int i=j+1;i<n;i++)
		{
			if(!mat[j][j]) return 0;
			double temp=mat[i][j]/mat[j][j];
			for(int k=j;k<=n;k++)
			mat[i][k]-=mat[j][k]*temp;
		}
	}
	return 1;
}
int gauss()
{
	if(!SelectCol()) return 0;
	for(int i=n-1;i>=0;i--)
	{
		if(!mat[i][i]) return 0;
		for(int j=i+1;j<n;j++)
		mat[i][n]-=mat[i][j]*mat[j][n];
		mat[i][n]/=mat[i][i];
	}
	return 1;
}
int main()
{
	int t;
	while(scanf("%d",&t)!=EOF)
	{
		while(t--)
		{
			int N;
			memset(P,0,sizeof(P));
			memset(mat,0,sizeof(mat));
			scanf("%d%d%d%d%d",&N,&m,&y,&x,&d);
			n=2*N-2;
			if(d>0) x=(n-x)%n; 
			int p;
			for(int i=1;i<=m;i++)
			{
				scanf("%d",&p);
				P[i]=p/100.0;
			}
			if(x==y)
			{
				printf("0.00\n");
				continue ;
			}
			if(!bfs())
			{
				printf("Impossible !\n");
				continue ;
			}
			creat();
			if(!gauss())
			printf("Impossible !\n");
			else
			printf("%.2lf\n",mat[x][n]);
		}
	}
}


### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值