I was trying to solve problem '1234 - Harmonic Number', I wrote the following code
long long H( int n ) {
long long res = 0;
for( int i = 1; i <= n; i++ )
res = res + n / i;
return res;
}
Yes, my error was that I was using the integer divisions only. However, you are given n, you have to find H(n) as in my code.
Input starts with an integer T (≤ 1000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n < 231).
For each case, print the case number and H(n) calculated by the code.
11
1
2
3
4
5
6
7
8
9
10
2147483647
Case 1: 1
Case 2: 3
Case 3: 5
Case 4: 8
Case 5: 10
Case 6: 14
Case 7: 16
Case 8: 20
Case 9: 23
Case 10: 27
Case 11: 46475828386
题解:先在大脑里面模拟一下,当i取某个值时n/i可能等于n/(i+1),然后需要把出现这种情况的i的范围确定;设小数:k,若存在:int(x/kx)==int(n/(k+1));那么x/k<x/(k+1)+1;解方程可得k约大于等于根号下n,那么也就是说整数i取1到n的0.5次时,n/i!=n/(i+1);最后ret+=n/i;ret+=(n/i-n/(i+1))*i;跑1到根号n的氛围循环就行了,如果i*i==n就要多减一个i.
#include<stdio.h>
#include<cstdio>
#include<algorithm>
#include<string.h>
using namespace std;
typedef long long ll;
int main()
{
int t;
while(scanf("%d",&t)!=EOF)
{
int kase=0;
while(t--)
{
ll i,n,ret=0;
scanf("%lld",&n);
for(i=1;i*i<=n;i++)
{
ret+=n/i;
ret+=(n/i-n/(i+1))*i;
}
if((i-1)==n/(i-1)) ret-=(i-1);
printf("Case %d: %lld\n",++kase,ret);
}
}
}