每日一题 33搜素旋转排序数组(二分)

文章描述了一种在已知经过旋转的整数数组中使用二分查找算法寻找目标值的解决方案,确保时间复杂度为O(logn)。通过比较中间元素和边界条件来确定目标值的位置。

题目

整数数组 nums 按升序排列,数组中的值 互不相同 。

在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。

你必须设计一个时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [4,5,6,7,0,1,2], target = 0
输出:4

示例 2:

输入:nums = [4,5,6,7,0,1,2], target = 3
输出:-1

示例 3:

输入:nums = [1], target = 0
输出:-1

题解

class Solution {
    public int search(int[] nums, int target) {
        int n = nums.length;
        if (n == 0) {
            return -1;
        }
        if (n == 1) { //先判断以防进入死循环
            return nums[0]==target ? 0 : -1;
        }
        int left = 0, right = n - 1;
        while (left <= right) { //区间不为0
            int mid = left + (right - left)/2;
            if (nums[mid] == target) {
                return mid;
            }
            //本题mid 两边一边递增 另一边不递增
            if (nums[0] <= nums[mid]) { 
                if (nums[0] <= target && target < nums[mid]) {
                    right = mid - 1;
                } else {
                    left = mid + 1;
                }
            } else {
                if (nums[mid] < target && target <= nums[n - 1]) {
                    left = mid + 1;
                } else {
                    right = mid - 1;
                }
            }
        }
        return -1;
    }
}

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值