
计算机视觉
文章平均质量分 92
FengF2017
什么都要会一点
邮箱:sxfenng@foxmail.com
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion1. 论文信息论文标题Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion论文来源CVPR2020, https://arxiv.org/abs/1912.08795代码https: //github.com/NVlabs/DeepInversion2. 背景梳理将所学知识从一原创 2021-04-14 14:36:01 · 2264 阅读 · 0 评论 -
FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning
FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space论文标题FedDG: Federated Domain Generalization on Medical Image Segmentation via Episodic Learning in Continuous Frequency Space论文来源CVPR原创 2021-04-11 13:50:37 · 3003 阅读 · 3 评论 -
EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational Reasoning
论文阅读: EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational Reasoning论文标题EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational Reasoning论文来源NIPS 2020, 论文PDF论文代码暂未开源1 背景梳理多智能体轨迹预测这一任务的目标是给定系统中不同种类物体的历史轨迹,预测出其未来的运动趋势原创 2021-04-06 14:44:03 · 1002 阅读 · 0 评论 -
Multi-Stage Progressive Image Restoration
1. 论文Multi-Stage Progressive Image Restoration(CVPR2021)链接:https://arxiv.org/pdf/2102.02808.pdf代码:http://github.com/swz30/MPRNet2. 背景图像恢复任务在恢复图像时,需要在空间细节和上下文信息之间取得复杂的平衡。本文提出了一种协同设计的 MPRNet,可以平衡这些目标。本文主要提出了一个多阶段的架构,逐步学习退化输入的恢复功能,从而将整个恢复过程分解成更容易管理的步骤。原创 2021-03-29 10:38:05 · 3012 阅读 · 1 评论 -
Graph Wavelet Neural Network
论文标题Graph Wavelet Neural Network论文来源ICLR 2019, 论文PDF论文代码https://github.com/benedekrozemberczki/GraphWaveletNeuralNetwork1 背景梳理对于自然界中广泛存在的非欧式拓普数据,即图(Graph),的研究得到了广泛关注,为了有效提取图的特征表达,图神经网络(GNN)等一类优秀的模型被提出,并适用于广泛的应用场景,如社交网络、推荐系统、智慧医疗以及城市规划。谱域卷积网络(Spectra原创 2021-03-26 19:16:46 · 4524 阅读 · 1 评论 -
Graph Convolutional Networks for Temporal Action Localization
图神经网络用于时序动作定位论文信息Paper title:Graph Convolutional Networks for Temporal Action LocalizationPaper source:ICCV 2019Paper link: https://openaccess.thecvf.com/content_ICCV_2019/html/Zeng_Graph_Convolutional_Networks_for_Temporal_Action_Localization_ICCV_201原创 2021-02-09 10:17:47 · 650 阅读 · 0 评论 -
A Simple Baseline for Multi-Object Tracking
A Simple Baseline for Multi-Object Tracking论文信息Paper:[CVPR2020] A Simple Baseline for Multi-Object TrackingLink : https://arxiv.org/abs/2004.01888Code : https://github.com/ifzhang/FairMOT/背景多目标跟踪(MOT)是计算机视觉领域的一个重要问题。其目的是估计视频中多个感兴趣目标的轨迹。目前多目标追踪任务的解决方法原创 2021-02-04 14:13:32 · 343 阅读 · 0 评论 -
A Hybrid, Dual Domain, Cascade of Convolutional Neural Networks for MRI Reconstruction
用于核磁共振影像重建的双域混合学习级联卷积网络1. 论文信息论文标题: A Hybrid, Dual Domain, Cascade of Convolutional Neural Networks for Magnetic Resonance Image Reconstruction论文来源: MIDL 2019论文链接: http://proceedings.mlr.press/v102/souza19a/souza19a.pdf代码来源: https://github.com/rmsouza原创 2021-02-04 14:12:34 · 1209 阅读 · 3 评论 -
DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and Surgical Margin
DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and Surgical Margin via Contrast-Enhanced CT Imaging论文信息Paper: [MICCAI2020] DeepPrognosis: Preoperative Prediction of Pancreatic Cancer Survival and Surgical Margin via Contrast-Enhanc原创 2021-02-03 23:22:10 · 594 阅读 · 0 评论 -
Generating Better Search Engine Text Advertisements with Deep Reinforcement Learning
论文信息Paper: Generating Better Search Engine Text Advertisements with Deep Reinforcement LearningSource: KDD 2019Link: https://dl.acm.org/doi/pdf/10.1145/3292500.3330754引言强化学习经常被用于直接优化一些不可微分的奖励函数,例如在游戏中agent的得分等。本文中,作者将强化学习应用于广告文案生成,希望模型生成的广告文案在语义通顺的前原创 2021-02-03 23:20:56 · 304 阅读 · 0 评论 -
Boundary-sensitive Pre-training for Temporal Localization in Videos
Boundary-sensitive Pre-training for Temporal Localization in Videos论文标题:Boundary-sensitive Pre-training for Temporal Localization in Videos论文链接:https://arxiv.org/abs/2011.10830引言视频时间动作定位(Temporal Action Localization)任务的目标是从原始视频中提取包含某些特定动作的视频段的起止时间和动作原创 2021-02-02 16:29:00 · 452 阅读 · 0 评论 -
Video Object Segmentation with Adaptive Feature Bank and Uncertain-Region Refinement
论文信息Paper: [NeurIPS 2020] Video Object Segmentation with Adaptive Feature Bank and Uncertain-Region RefinementLink: https://arxiv.org/abs/2010.07958Code: https://github.com/xmlyqing00/AFB-URR背景梳理视频对象分割(VOS)是许多视频处理任务(如视频编辑和视频修复)中的基本步骤。在半监督的设定下,给出了目标对原创 2021-02-02 16:11:36 · 659 阅读 · 0 评论 -
Global and Local Enhancement Networks for Paired and Unpaired Image Enhancement
论文信息Paper: [ECCV2020] Global and Local Enhancement Networks for Paired and Unpaired Image EnhancementLink: http://mcl.korea.ac.kr/research/hukim-eccv2020-glenet/5010.pdfCode: https://github.com/hukim1124/GleNet背景梳理图像增强(Image Enhancement)任务是指将低质量的图像(原创 2021-02-01 11:48:46 · 933 阅读 · 0 评论 -
Adversarial Self-Supervised Contrastive Learning
论文标题:Adversarial Self-Supervised Contrastive Learning论文来源:NeurIPS 2020论文链接:https://arxiv.org/abs/2006.07589代码链接:https://github.com/Kim-Minseon/RoCL1 引言现有的对抗学习方法大多使用类别标签来生成导致错误预测的对抗样本,然后使用这些对抗样本来增强模型的训练,以提高模型的鲁棒性。虽然最近的一些方法提出了使用未标记数据的半监督对抗学习方法,但是它们仍原创 2021-02-01 11:45:38 · 1387 阅读 · 0 评论 -
Unfolding the Alternating Optimization for Blind Super Resolution
Unfolding the Alternating Optimization for Blind Super Resolution论文信息Paper: [NeurIPS2020] Unfolding the Alternating Optimization for Blind Super ResolutionLink: https://papers.nips.cc/paper/2020/file/3d2d8ccb37df977cb6d9da15b76c3f3a-Paper.pdfCode: htt原创 2021-01-28 10:51:10 · 2031 阅读 · 0 评论 -
Convolutional Generation of Textured 3D Meshes
论文标题:Convolutional Generation of Textured 3D Meshes论文来源:NeurIPS 2020论文链接:https://papers.nips.cc/paper/2020/hash/098d86c982354a96556bd861823ebfbd-Abstract.html代码来源:https://github.com/dariopavllo/convmesh1 引言在海量图像的驱动下,基于GAN的图像生成模型已经可以获得十分逼真的生成效果,在控制原创 2021-01-23 10:27:46 · 1176 阅读 · 0 评论 -
Predicting Lymph Node Metastasis Using Histopathological Images Based on Multiple Instance Learning
基于深度图卷积的多实例学习——利用组织病理学图像预测淋巴结转移论文标题Predicting Lymph Node Metastasis Using Histopathological Images Based on Multiple Instance Learning with Deep Graph Convolution论文来源[CVPR 2020]https://openaccess.thecvf.com/content_CVPR_2020/html/Zhao_Predicting_Lymph原创 2021-01-20 09:46:13 · 646 阅读 · 1 评论 -
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
1. 论文PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models (cvpr2020)Link: https://arxiv.org/pdf/2003.03808.pdfCode: https://github.com/adamian98/pulse (4.8k star)2. 背景梳理超分辨任务是典型的ill-posed问题,根本原因在于图像在退化的过程中会产生信息的丢原创 2021-01-19 14:51:50 · 1152 阅读 · 0 评论 -
Contrastive learning of global and local features for medical image segmentation
医疗图像分割中有限标注情况下的全局和局部特征的对比学习论文信息Paper:Contrastive learning of global and local features for medical image segmentation with limited annotationsLink:[NIPS 2020 oral presentation]https://papers.nips.cc/paper/2020/file/949686ecef4ee20a62d16b4a2d7ccca3-Pape原创 2021-01-17 14:54:50 · 2125 阅读 · 0 评论 -
Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation
Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation论文标题Inference Stage Optimization for Cross-scenario 3D Human Pose Estimation论文来源NeurIPS 2020,https://papers.nips.cc/paper/2020/hash/1943102704f8f8f3302c2b730728e023-Abstract.html原创 2021-01-13 15:44:35 · 448 阅读 · 0 评论 -
Structure Boundary Preserving Segmentation for Medical Image with Ambiguous Boundary
具有模糊边界的医疗影像边界结构保护分割论文标题Structure Boundary Preserving Segmentation for Medical Image with Ambiguous Boundary论文来源[CVPR 2020] https://openaccess.thecvf.com/content_CVPR_2020/html/Lee_Structure_Boundary_Preserving_Segmentation_for_Medical_Image_With_Ambigu原创 2021-01-12 19:59:03 · 1796 阅读 · 3 评论 -
3D Self-Supervised Methods for Medical Imaging
3D Self-Supervised Methods for Medical Imaging论文信息Paper: [NeurIPS2020] 3D Self-Supervised Methods for Medical ImagingLink: https://papers.nips.cc/paper/2020/file/d2dc6368837861b42020ee72b0896182-Paper.pdfCode: https://github.com/HealthML/self-supervis原创 2021-01-10 18:36:57 · 666 阅读 · 0 评论 -
A Simple Baseline for Multi-Object Tracking
A Simple Baseline for Multi-Object Tracking论文信息Paper:[CVPR2020] A Simple Baseline for Multi-Object TrackingLink : https://arxiv.org/abs/2004.01888Code : https://github.com/ifzhang/FairMOT/背景多目标跟踪(MOT)是计算机视觉领域的一个重要问题。其目的是估计视频中多个感兴趣目标的轨迹。目前多目标追踪任务的解决方法原创 2021-01-09 10:55:51 · 455 阅读 · 0 评论 -
A Hybrid, Dual Domain, Cascade of Convolutional Neural Networks for MR Image Reconstruction
用于核磁共振影像重建的双域混合学习级联卷积网络1. 论文信息论文标题: A Hybrid, Dual Domain, Cascade of Convolutional Neural Networks for Magnetic Resonance Image Reconstruction论文来源: MIDL 2019论文链接: http://proceedings.mlr.press/v102/souza19a/souza19a.pdf代码来源: https://github.com/rmsouza原创 2021-01-07 19:22:07 · 951 阅读 · 2 评论 -
Linearly-Assembled Pixel-Adaptive Regression Network for Single Image Super-resolution and Beyond
基于带噪目标的图像修复学习论文信息Paper: [ICML 2018] Noise2Noise: Learning Image Restoration without Clean DataLink: https://arxiv.org/pdf/1803.04189.pdfCode: https://github.com/NVlabs/noise2noise背景图像修复问题简单来说可以构建为一个回归问题,对于数据对(xi^,yi)(\hat{x_i},y_i)(xi^,yi),其中x原创 2020-12-29 20:03:29 · 1640 阅读 · 0 评论 -
Exploiting weakly supervised visual patterns to learn from partial annotations
挖掘弱监督视觉模式来从部分标注中学习论文标题Exploiting weakly supervised visual patterns to learn from partial annotations论文来源NeurIPS 2020, https://proceedings.neurips.cc/paper/2020/hash/066ca7bf90807fcd8e4f1eaef4e4e8f7-Abstract.html1 背景梳理标注图片中的所有类别耗费大量的人力物力,部分标注数据集的出现解决了原创 2020-12-28 12:36:25 · 222 阅读 · 0 评论 -
目标检测博客汇总
目标检测博客汇总文章目录目标检测博客汇总综述R-CNNSPP-NetFast R-CNNFaster R-CNNMask R-CNNYolo对于目标检测的方法R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN、Yolo v1-v3各选择了一篇或几篇我认为写的比较好的博客。记录一下方便以后查阅。综述目标检测(一)——目标检测综述一文读懂目标检测:R-CNN...原创 2019-08-24 17:51:15 · 489 阅读 · 0 评论 -
Richer Convolutional Feature for Edge Detection
Richer Convolutional Feature for Edge Detection文章链接为Richer Convolutional Feature for Edge Detection这篇文章通过结合所有有意义的卷积的feature,更好地利用multi-scale和multilevel信息。网络结构文章中网络设计的出发点为不同层feature包含的信息不同。越深层的feat...原创 2019-03-11 10:03:22 · 530 阅读 · 0 评论 -
理解ResNet
理解ResNet文章目录理解ResNet一、ResNet回顾1.11.2二、传统网络的理解三、理解方式一:Ensembles of Relatively Shallow Networks实验一:在测试时去掉某一个block实验二:在测试时去掉多个block实验三:在测试时重新调整block的位置三、理解方式二:Unrolled Iterative Estimation四、总结本篇内容主要讲两种...原创 2018-12-19 23:33:45 · 1764 阅读 · 1 评论 -
Attention-Driven Deep Learning for Pathological Spine Segmentation
Attention-Driven Deep Learning for Pathological Spine Segmentation使用了两个网络,一个脊骨分割网络,一个脊柱定位网络。脊柱定位网络网络结构见下图。一张 2D 的脊椎侧面图 patch160*160,扩大到(padded to)720*720 作为输入,经过网络后 得到 10*10 的 map。Map 中的每个值属于[0...原创 2018-10-21 11:15:33 · 1004 阅读 · 1 评论 -
3D U-Net
3D U-Net笔记一、Network ArchitectureLike the standard u-net, it has an analysis and a synthesis path.In the analysis path, 3 × 3 × 3 convolutions, 2 × 2 × 2 max pooling with strides of two.In the ...原创 2018-10-14 22:43:46 · 5217 阅读 · 0 评论