矩阵奇异值分解简介及C++/OpenCV/Eigen的三种实现

本文深入讲解奇异值分解(SVD)的基本概念及其实现方法,包括SVD的定义、应用场景、计算步骤等,并提供了C++、OpenCV和Eigen库的具体实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

奇异值分解(singular value decomposition, SVD):将矩阵分解为奇异向量(singular vector)和奇异值(singular value)。通过奇异值分解,我们会得到一些与特征分解相同类型的信息。然而,奇异值分解有更广泛的应用。每个实数矩阵都有一个奇异值分解,但不一定都有特征分解。例如,非方阵的矩阵没有特征分解,这是我们只能使用奇异值分解。

将矩阵A分解成三个矩阵的乘积:A=UDVT

假设A是一个m*n的矩阵,那么U是一个m*m的矩阵,D是一个m*n的矩阵,V是一个n*n矩阵。

这些矩阵中的每一个经定义后都拥有特殊的结构。矩阵U和V都被定义为正交矩阵,而矩阵D被定义为对角矩阵。注意,矩阵D不一定是方阵。对角矩阵D对角线上的元素被称为矩阵A的奇异值(singular value)。矩阵U的列向量被称为左奇异向量(left singular vector),矩阵V的列向量被称为右奇异向量(right singular vector)。A的左奇异向量是AAT的特征向量。A的右奇异向量是ATA的特征向量。A的非零奇异值是ATA特征值的平方根,同时也是AAT特征值的平方根。

奇异值分解(singular value decomposition)是线性代数中一种重要的矩阵分解,在信号处理、统计学等领域有重要应用。奇异值分解能够用于任意m*n矩阵,而特征分解只能适用于特定类型的方阵,故奇异值分解的适用范围更广。

以上内容摘自: 《深度学习中文版》 和  维基百科

基于雅克比(Jacobi)方法对矩阵进行奇异值分解操作步骤(参考OpenCV中实现):

(1)、对原始矩阵A(m*n)进行判断,若m<n(即行数小于列数),则交换m、n值;若m≥n,则对A进行转置变换;

(2)、初始化临时变量D、U、Vt:D为奇异值,为n行1列;U为左奇异向量,为m行m列;Vt为转置后的右奇异向量,为n行n列;并初始化D、U、Vt值均为0;

(3)、初始化临时变量A′:A′为m行m列,并将A的值赋值给A′,A′中多余元素赋初值为0;

(4)、由A′、D、Vt开始进行基于Jacobi方法的奇异值分解;

(5)、设置临时变量W,长度为n,将A′中前n行中,每行元素的平方和赋值给W;

(6)、设置Vt为单位矩阵;

(7)、循环计算旋转矩阵,并更新A′、W、Vt对应位置的值;最大循环次数为std::max(m, 30);

(8)、重置W值为A′中前n行,每行元素平方和的开方;

(9)、将W中元素按照从大到小排序,排序后的W即为D中主对角线元素值;

(10)、按照(9)中对W的排序规则对A′和Vt进行排序;

(11)、计算A′中值;

(12)、最终的A′和Vt即为所求的左、右奇异向量。

以下是分别采用C++(参考opencv sources/modules/core/src/lapack.cpp)和OpenCV实现的矩阵奇异值分解

#include "funset.hpp"
#include <math.h>
#include <iostream>
#include <string>
#include <vector>
#include <opencv2/opencv.hpp>
#include "common.hpp"

// ================================= 矩阵奇异值分解 =================================
template<typename _Tp>
static void JacobiSVD(std::vector<std::vector<_Tp>>& At,
	std::vector<std::vector<_Tp>>& _W, std::vector<std::vector<_Tp>>& Vt)
{
	double minval = FLT_MIN;
	_Tp eps = (_Tp)(FLT_EPSILON * 2);
	const int m = At[0].size();
	const int n = _W.size();
	const int n1 = m; // urows
	std::vector<double> W(n, 0.);

	for (int i = 0; i < n; i++) {
		double sd{0.};
		for (int k = 0; k < m; k++) {
			_Tp t = At[i][k];
			sd += (double)t*t;
		}
		W[i] = sd;

		for (int k = 0; k < n; k++)
			Vt[i][k] = 0;
		Vt[i][i] = 1;
	}

	int max_iter = std::max(m, 30);
	for (int iter = 0; iter < max_iter; iter++) {
		bool changed = false;
		_Tp c, s;

		for (int i = 0; i < n - 1; i++) {
			for (int j = i + 1; j < n; j++) {
				_Tp *Ai = At[i].data(), *Aj = At[j].data();
				double a = W[i], p = 0, b = W[j];

				for (int k = 0; k < m; k++)
					p += (double)Ai[k] * Aj[k];

				if (std::abs(p) <= eps * std::sqrt((double)a*b))
					continue;

				p *= 2;
				double beta = a - b, gamma = hypot_((double)p, beta);
				if (beta < 0) {
					double delta = (gamma - beta)*0.5;
					s = (_Tp)std::sqrt(delta / gamma);
					c = (_Tp)(p / (gamma*s * 2));
				} else {
					c = (_Tp)std::sqrt((gamma + beta) / (gamma * 2));
					s = (_Tp)(p / (gamma*c * 2));
				}

				a = b = 0;
				for (int k = 0; k < m; k++) {
					_Tp t0 = c*Ai[k] + s*Aj[k];
					_Tp t1 = -s*Ai[k] + c*Aj[k];
					Ai[k] = t0; Aj[k] = t1;

					a += (double)t0*t0; b += (double)t1*t1;
				}
				W[i] = a; W[j] = b;

				changed = true;

				_Tp *Vi = Vt[i].data(), *Vj = Vt[j].data();

				for (int k = 0; k < n; k++) {
					_Tp t0 = c*Vi[k] + s*Vj[k];
					_Tp t1 = -s*Vi[k] + c*Vj[k];
					Vi[k] = t0; Vj[k] = t1;
				}
			}
		}

		if (!changed)
			break;
	}

	for (int i = 0; i < n; i++) {
		double sd{ 0. };
		for (int k = 0; k < m; k++) {
			_Tp t = At[i][k];
			sd += (double)t*t;
		}
		W[i] = std::sqrt(sd);
	}

	for (int i = 0; i < n - 1; i++) {
		int j = i;
		for (int k = i + 1; k < n; k++) {
			if (W[j] < W[k])
				j = k;
		}
		if (i != j) {
			std::swap(W[i], W[j]);

			for (int k = 0; k < m; k++)
				std::swap(At[i][k], At[j][k]);

			for (int k = 0; k < n; k++)
				std::swap(Vt[i][k], Vt[j][k]);
		}
	}

	for (int i = 0; i < n; i++)
		_W[i][0] = (_Tp)W[i];

	srand(time(nullptr));

	for (int i = 0; i < n1; i++) {
		double sd = i < n ? W[i] : 0;

		for (int ii = 0; ii < 100 && sd <= minval; ii++) {
			// if we got a zero singular value, then in order to get the corresponding left singular vector
			// we generate a random vector, project it to the previously computed left singular vectors,
			// subtract the projection and normalize the difference.
			const _Tp val0 = (_Tp)(1. / m);
			for (int k = 0; k < m; k++) {
				unsigned int rng = rand() % 4294967295; // 2^32 - 1
				_Tp val = (rng & 256) != 0 ? val0 : -val0;
				At[i][k] = val;
			}
			for (int iter = 0; iter < 2; iter++) {
				for (int j = 0; j < i; j++) {
					sd = 0;
					for (int k = 0; k < m; k++)
						sd += At[i][k] * At[j][k];
					_Tp asum = 0;
					for (int k = 0; k < m; k++) {
						_Tp t = (_Tp)(At[i][k] - sd*At[j][k]);
						At[i][k] = t;
						asum += std::abs(t);
					}
					asum = asum > eps * 100 ? 1 / asum : 0;
					for (int k = 0; k < m; k++)
						At[i][k] *= asum;
				}
			}

			sd = 0;
			for (int k = 0; k < m; k++) {
				_Tp t = At[i][k];
				sd += (double)t*t;
			}
			sd = std::sqrt(sd);
		}

		_Tp s = (_Tp)(sd > minval ? 1 / sd : 0.);
		for (int k = 0; k < m; k++)
			At[i][k] *= s;
	}
}

// matSrc为原始矩阵,支持非方阵,matD存放奇异值,matU存放左奇异向量,matVt存放转置的右奇异向量
template<typename _Tp>
int svd(const std::vector<std::vector<_Tp>>& matSrc,
	std::vector<std::vector<_Tp>>& matD, std::vector<std::vector<_Tp>>& matU, std::vector<std::vector<_Tp>>& matVt)
{
	int m = matSrc.size();
	int n = matSrc[0].size();
	for (const auto& sz : matSrc) {
		if (n != sz.size()) {
			fprintf(stderr, "matrix dimension dismatch\n");
			return -1;
		}
	}

	bool at = false;
	if (m < n) {
		std::swap(m, n);
		at = true;
	}

	matD.resize(n);
	for (int i = 0; i < n; ++i) {
		matD[i].resize(1, (_Tp)0);
	}
	matU.resize(m);
	for (int i = 0; i < m; ++i) {
		matU[i].resize(m, (_Tp)0);
	}
	matVt.resize(n);
	for (int i = 0; i < n; ++i) {
		matVt[i].resize(n, (_Tp)0);
	}
	std::vector<std::vector<_Tp>> tmp_u = matU, tmp_v = matVt;

	std::vector<std::vector<_Tp>> tmp_a, tmp_a_;
	if (!at)
		transpose(matSrc, tmp_a);
	else
		tmp_a = matSrc;

	if (m == n) {
		tmp_a_ = tmp_a;
	} else {
		tmp_a_.resize(m);
		for (int i = 0; i < m; ++i) {
			tmp_a_[i].resize(m, (_Tp)0);
		}
		for (int i = 0; i < n; ++i) {
			tmp_a_[i].assign(tmp_a[i].begin(), tmp_a[i].end());
		}
	}
	JacobiSVD(tmp_a_, matD, tmp_v);

	if (!at) {
		transpose(tmp_a_, matU);
		matVt = tmp_v;
	} else {
		transpose(tmp_v, matU);
		matVt = tmp_a_;
	}

	return 0;
}

int test_SVD()
{
	//std::vector<std::vector<float>> vec{ { 1.2f, 2.5f, 5.6f, -2.5f },
	//				{ -3.6f, 9.2f, 0.5f, 7.2f },
	//				{ 4.3f, 1.3f, 9.4f, -3.4f },
	//				{ 6.4f, 0.1f, -3.7f, 0.9f } };
	//const int rows{ 4 }, cols{ 4 };

	//std::vector<std::vector<float>> vec{ { 1.2f, 2.5f, 5.6f, -2.5f },
	//				{ -3.6f, 9.2f, 0.5f, 7.2f },
	//				{ 4.3f, 1.3f, 9.4f, -3.4f } };
	//const int rows{ 3 }, cols{ 4 };

	std::vector<std::vector<float>> vec{ { 0.68f, 0.597f },
					{ -0.211f, 0.823f },
					{ 0.566f, -0.605f } };
	const int rows{ 3 }, cols{ 2 };

	fprintf(stderr, "source matrix:\n");
	print_matrix(vec);

	fprintf(stderr, "\nc++ implement singular value decomposition:\n");
	std::vector<std::vector<float>> matD, matU, matVt;
	if (svd(vec, matD, matU, matVt) != 0) {
		fprintf(stderr, "C++ implement singular value decomposition fail\n");
		return -1;
	}
	fprintf(stderr, "singular values:\n");
	print_matrix(matD);
	fprintf(stderr, "left singular vectors:\n");
	print_matrix(matU);
	fprintf(stderr, "transposed matrix of right singular values:\n");
	print_matrix(matVt);

	fprintf(stderr, "\nopencv singular value decomposition:\n");
	cv::Mat mat(rows, cols, CV_32FC1);
	for (int y = 0; y < rows; ++y) {
		for (int x = 0; x < cols; ++x) {
			mat.at<float>(y, x) = vec.at(y).at(x);
		}
	}

	/*
		w calculated singular values
		u calculated left singular vectors
		vt transposed matrix of right singular vectors
	*/
	cv::Mat w, u, vt, v;
	cv::SVD::compute(mat, w, u, vt, 4);
	//cv::transpose(vt, v);

	fprintf(stderr, "singular values:\n");
	print_matrix(w);
	fprintf(stderr, "left singular vectors:\n");
	print_matrix(u);
	fprintf(stderr, "transposed matrix of right singular values:\n");
	print_matrix(vt);

	return 0;
}
执行结果如下:

以下是采用Eigen实现的矩阵奇异值分解code:

#include "funset.hpp"
#include <math.h>
#include <iostream>
#include <vector>
#include <string>
#include <opencv2/opencv.hpp>
#include <Eigen/Dense>
#include "common.hpp"

int test_SVD()
{
	//std::vector<std::vector<float>> vec{ { 1.2f, 2.5f, 5.6f, -2.5f },
	//				{ -3.6f, 9.2f, 0.5f, 7.2f },
	//				{ 4.3f, 1.3f, 9.4f, -3.4f },
	//				{ 6.4f, 0.1f, -3.7f, 0.9f } };
	//const int rows{ 4 }, cols{ 4 };

	//std::vector<std::vector<float>> vec{ { 1.2f, 2.5f, 5.6f, -2.5f },
	//				{ -3.6f, 9.2f, 0.5f, 7.2f },
	//				{ 4.3f, 1.3f, 9.4f, -3.4f } };
	//const int rows{ 3 }, cols{ 4 };

	std::vector<std::vector<float>> vec{ { 0.68f, 0.597f },
					{ -0.211f, 0.823f },
					{ 0.566f, -0.605f } };
	const int rows{ 3 }, cols{ 2 };

	std::vector<float> vec_;
	for (int i = 0; i < rows; ++i) {
		vec_.insert(vec_.begin() + i * cols, vec[i].begin(), vec[i].end());
	}
	Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> m(vec_.data(), rows, cols);

	fprintf(stderr, "source matrix:\n");
	std::cout << m << std::endl;

	Eigen::JacobiSVD<Eigen::MatrixXf> svd(m, Eigen::ComputeFullV | Eigen::ComputeFullU); // ComputeThinU | ComputeThinV
	Eigen::MatrixXf singular_values = svd.singularValues();
	Eigen::MatrixXf left_singular_vectors = svd.matrixU();
	Eigen::MatrixXf right_singular_vectors = svd.matrixV();

	fprintf(stderr, "singular values:\n");
	print_matrix(singular_values.data(), singular_values.rows(), singular_values.cols());
	fprintf(stderr, "left singular vectors:\n");
	print_matrix(left_singular_vectors.data(), left_singular_vectors.rows(), left_singular_vectors.cols());
	fprintf(stderr, "right singular vecotrs:\n");
	print_matrix(right_singular_vectors.data(), right_singular_vectors.rows(), right_singular_vectors.cols());

	return 0;
}
执行结果如下:

由以上结果可见:C++、OpenCV、Eigen结果是相同的。

GitHub

https://github.com/fengbingchun/NN_Test

https://github.com/fengbingchun/Eigen_Test

<think>好的,我现在需要帮助用户解决关于C++实现奇异值分解(SVD)的问题。首先,用户提到想了解如何用C++实现SVD或者相关的数学库推荐。我需要结合用户提供的引用内容来给出合适的回答。 用户提供的引用中,引用[1]提到了SVD的数学原理和C++代码实现,特别是双边Jacobi方法,以及Matrix类的修改。引用[2]展示了使用OpenCV进行图像压缩的实例,其中调用了cv::SVD::compute函数。引用[3]和[4]是关于SVD的数学原理和应用,但可能对编程实现帮助不大。 首先,我应该考虑用户的需求是C++实现SVD的方法或库推荐。因此,回答需要涵盖以下几个部分: 1. 数学库推荐:如Eigen、Armadillo、OpenCV等,这些库都支持SVD。需要根据用户提供的引用中的例子,比如引用[2]中的OpenCV代码,说明OpenCV的使用方法。 2. 手动实现SVD的方法:引用[1]中提到了双边Jacobi方法,这是实现SVD的一种经典算法。可以简要说明步骤,并引用用户提供的代码示例,如生成单位矩阵和修改RowProxy类的内容。 3. 应用实例:如引用[2]中的图像压缩,展示如何用OpenCV进行SVD分解和压缩,这可以作为实际应用的例子,帮助用户理解如何使用库函数。 需要注意用户可能对代码实现细节感兴趣,因此需要提供具体的代码片段,如使用EigenOpenCV的示例。同时,用户可能关心如何选择库,因此需要比较不同库的特点,比如Eigen适合高性能计算,OpenCV适合图像处理。 另外,用户提供的引用中有关于Matrix类的修改和RowProxy类的代码,这可能是在手动实现SVD时需要处理矩阵操作的部分。因此,在手动实现部分需要解释这些代码的作用,比如生成单位矩阵和行代理类如何支持矩阵操作。 最后,生成相关问题,可能涉及性能优化、不同库的对比、实际应用场景等,需要确保问题与用户的需求相关,并引导进一步的学习。 总结回答结构: 1. 数学库推荐(EigenOpenCV、Armadillo) 2. 使用OpenCV实现SVD的示例 3. 使用Eigen库的示例 4. 手动实现SVD的方法(双边Jacobi,引用[1]的代码) 5. 应用实例(图像压缩,引用[2]) 6. 相关问题 需要确保所有数学公式用$...$,独立公式用$$...$$,代码块正确,引用标识正确添加。例如,在提到双边Jacobi方法时引用[^1],提到图像压缩时引用[^2]。 最后检查是否符合系统级指令,如中文回答,结构清晰,引用正确,生成相关问题等。</think>### C++实现奇异值分解(SVD)的方法与库推荐 #### 一、数学库推荐与实现方法 1. **Eigen库** Eigen是高性能的线性代数库,提供完整的SVD实现,支持稠密矩阵和动态类型。其实现基于分治算法,适用于中小型矩阵。 ```cpp #include <Eigen/SVD> using namespace Eigen; MatrixXd A(3,3); // 输入矩阵 JacobiSVD<MatrixXd> svd(A, ComputeFullU | ComputeFullV); // 计算SVD MatrixXd U = svd.matrixU(); MatrixXd V = svd.matrixV(); VectorXd S = svd.singularValues(); // 奇异值向量 ``` 2. **OpenCV库** OpenCV针对图像处理优化,其`cv::SVD`类支持快速分解(引用[2]中图像压缩案例): ```cpp cv::Mat A; // 输入矩阵 cv::Mat U, W, Vt; cv::SVD::compute(A, W, U, Vt, cv::SVD::FULL_UV); // 计算完整分解 ``` 3. **Armadillo库** 语法接近MATLAB,适合快速原型开发: ```cpp arma::mat A; // 输入矩阵 arma::mat U, V; arma::vec S; arma::svd(U, S, V, A); // 计算SVD ``` #### 二、手动实现方法(双边Jacobi算法) 双边Jacobi方法通过迭代将矩阵对角化,核心步骤如下(引用[1]中的矩阵操作): 1. **生成单位矩阵** ```cpp static Matrix identity(size_t n) { Matrix mat(n, n); for (size_t i = 0; i < n; ++i) mat[i][i] = 1.0f; return mat; } ``` 2. **矩阵行操作支持** 通过`RowProxy`代理类实现安全的行访问: ```cpp class RowProxy { public: RowProxy(float* row_start, size_t cols) : row_start_(row_start), cols_(cols) {} float& operator[](size_t col) { validate(col); return row_start_[col]; } // 其他方法略 }; ``` #### 三、应用实例:图像压缩(引用[2]) 通过调整压缩比$k = \text{rank} \times \text{ratio}$,保留前$k$个奇异值: $$ \mathbf{A}_{\text{compressed}} = \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^T $$ 其中$\mathbf{\Sigma}_k$为截断后的对角矩阵。 ####
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值